
Chapter 9

Confidence Intervals

In the preceding chapter, we examined the maximum likelihood method for
estimating the parameters of a statistical population, using a random sample
from that population. For example, if we have a sample from a population
with a normal distribution, we can estimate the parameter µ of this popu-
lation using the sample mean Ȳ . We will now examine a common method
for characterizing the precision of these estimates, known as confidence in-
tervals. Given an estimate Ȳ of µ, say, we will learn how to calculate an
interval that will contain the true population µ with a certain probability.
A narrow interval indicates the parameter µ is reliably estimated, while a
broad one indicates substantial uncertainty as to its value.

9.1 Preliminaries to confidence intervals

We now discuss some material that is essential for the construction of confi-
dence intervals and later in hypothesis testing. We first review some results
from Chapter 8 on parameter estimation for the normal distribution, then de-
rive some new results. We then examine some distributions associated with
sampling from the normal distributions, not surprisingly called sampling
distributions.

9.1.1 Parameters and estimates

Confidence intervals are based on estimates of population parameters, such
as µ and σ2 for populations with a normal distribution. Our previous results
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220 CHAPTER 9. CONFIDENCE INTERVALS

on parameter estimation suggest that Ȳ and s2 are reasonable estimators
of µ and σ2. The sample standard deviation s =

√
s2 is typically used to

estimate the population standard deviation σ.
We also want to estimate the variance and standard deviation of the

sample mean Ȳ . Recall that for a random sample Y1, Y2, ... Yn with any
distribution,

V ar[Ȳ ] =
V ar[Yi]

n
(9.1)

where V ar[Yi] is the variance of Yi (Chapter 7). For a random sample where
the observations are normal, this translates to

V ar[Ȳ ] =
σ2

n
(9.2)

because V ar[Yi] = σ2 for the normal. If we use s2 to estimate σ2, we can
therefore estimate V ar[Ȳ ] using s2/n and σ/

√
n using s/

√
n.

The table below summarizes the different parameters, their estimators,
and common terminology for these quantities:

Table 9.1: Parameters and their estimators
Parameter Estimator Terminology

µ Ȳ Sample mean
σ2 s2 Sample variance
σ s Sample standard deviation
σ2

n
s2

n
Sample variance of the mean

σ√
n

s√
n

Standard error of the mean

Recall that the term standard error always refers to the standard deviation of
a statistic, such as Ȳ . The term standard deviation used without qualification
usually means the standard deviation s of items in a random sample from a
population.

9.1.2 Sampling distributions

In this section, we will first examine the probability distribution of the esti-
mator Ȳ . We then examine the distributions of some quantities involving Ȳ
and the sample variance s2, known as sampling distributions. These sampling
distributions will be used to construct confidence intervals and also play an
important role in hypothesis testing (Chapter 10).
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Distribution of Ȳ

Suppose we have a random sample Y1, Y2, ..., Yn from a statistical popula-
tion with a normal distribution, in particular that Yi ∼ N(µ, σ2) and are
independent of each other. It can be shown that

Ȳ ∼ N

(
µ,
σ2

n

)
. (9.3)

Thus, the sample mean of normal observations also has a normal distribution
with the same mean µ, but with variance equal to σ2/n, not σ2 (Mood et al.
1974).

Note that the distribution of Ȳ will be approximately normal for any
distribution provided n is large, thanks to the central limit theorem (see
Chapter 7). Thus, for large sample sizes we have Ȳ ∼ N(E[Y ], V ar[Y ]/n)
for any probability distribution. This result has important statistical im-
plications. Confidence intervals and hypothesis testing procedures
often assume that Ȳ is normally distributed, and this will be ap-
proximately true if n is sufficiently large. These statistical procedures
are therefore robust to departures from normality in the data for large n.

We also learned earlier that if Y ∼ N(µ, σ2), then the transformed vari-
able (Y − µ)/σ has a standard normal distribution, or (Y − µ)/σ = Z ∼
N(0, 1). Combining these two results, we find that

Ȳ − µ√
σ2/n

=
Ȳ − µ
σ/
√
n
∼ N(0, 1) (9.4)

Thus, the quantity Ȳ−µ
σ/
√
n

has a standard normal distribution. We will use

this sampling distribution to obtain a confidence interval for µ, for the case
where σ2 is known from other information.

We will also need to find certain intervals with a specified probability
using the standard normal distribution, in order to construct confidence in-
tervals. In general, we will need to find a positive value c such that

P [−cα < Z < cα] = 1− α (9.5)

for this purpose, where typically α = 0.05 or 0.01. The values of cα that
satisfy this probability are often called critical values, a term that also
applies to other probability distributions. We use the notation cα because
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this quantity depends on the value of α. To find cα, we first express this
probability in terms of Table Z. We have

P [−cα < Z < cα] = P [Z < cα]− P [Z < −cα] (9.6)

= P [Z < cα]− (1− P [Z < cα]) (9.7)

= 2P [Z < cα]− 1. (9.8)

If we set 2P [Z < cα]− 1 = 1− α and rearrange, we get

P [Z < cα] = (2− α)/2 = 1− α/2. (9.9)

Therefore, we examine Table Z for a value of cα such that P [Z < cα] =
1 − α/2. For α = 0.05, we would look for c0.05 such that P [Z < c0.05] =
1 − 0.05/2 = 0.975 and find that c0.05 = 1.96 is the answer. Similarly, for
α = 0.01 we seek c0.01 such that P [Z < c0.01] = 1 − 0.01/2 = 0.995. There
is no value in Table Z that gives quite this probability, although we can see
2.57 and 2.58 are close. The exact answer is c0.01 = 2.576.

t distribution

Another important sampling distribution is the t distribution. This distribu-
tion has a single parameter, called the degrees of freedom, that governs the
shape of the distribution. It can be shown that the quantity

Ȳ − µ
s/
√
n
∼ tn−1 (9.10)

(Mood et al. 1974). Here the symbol ‘tn−1’ stands for the t distribution with
n−1 degrees of freedom, where n is the sample size in Ȳ . Degrees of freedom
is often abbreviated as ‘df ’.

The t distribution resembles the standard normal distribution in being
bell-shaped, except that it has more probability in the tails and less in the
center of the distribution (Fig. 9.1). Roughly speaking, the t distribution has
heavier tails than the normal because Ȳ and s are both random quantities
in Eq. 9.10, making their ratio more variable than for Eq. 9.4 where only Ȳ
is random. However, as n → ∞ the t distribution does approach the stan-
dard normal distribution. We will use this sampling distribution to obtain a
confidence interval for µ, when σ2 is estimated using the sample variance s2.
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What is the origin of the term degrees of freedom? Recall that the sample
standard deviation s is obtained from the sample variance, calculated using
the formula

s2 =
Σn
i=1(Yi − Ȳ )2

n− 1
. (9.11)

Notice that the sample variance s2 is composed of terms of the form Yi − Ȳ .
Although there are n of these terms, they also sum to zero (Σn

i (Yi− Ȳ ) = 0).
This implies that if n − 1 terms are known, we can always determine the
remaining term because of this relationship, implying there are really only
n − 1 free, independent terms in s2 (Mood et al. 1974). Hence the name
degrees of freedom.

Figure 9.1: Plot of the t distribution for different degrees of freedom

Table T gives the quantiles of the t distribution for different values of the
degrees of freedom and the cumulative probability p. We will also need to
find intervals of the form

P [−cα,df < T < cα,df ] = 1− α, (9.12)

where cα,df is a positive number, T has a t distribution, for α = 0.05 or 0.01.
We use the notation cα,df because this quantity will depend on both α and
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the degrees of freedom. We proceed as before by expressing this probability
in terms of Table T. We have

P [−cα,df < T < cα,df ] = P [T < cα,df ]− P [T < −cα,df ] (9.13)

= P [T < cα,df ]− (1− P [T < cα,df ]) (9.14)

= 2P [T < cα,df ]− 1. (9.15)

If we set 2P [T < cα,df ]− 1 = 1− α and rearrange, we get

2(1− P [T < cα,df ]) = α. (9.16)

Because P [T < cα,df ] is essentially p for this table, we simply look across the
row corresponding to 2(1− p) at the top and find the column corresponding
to α. For α = 0.05, we see that for df = 10 the answer is c0.05,10 = 2.228.
For α = 0.01 and df = 10, the answer is c0.01,10 = 3.169.

χ2 distribution

One other common sampling distribution is the χ2 (chi-square) distribution,
which also has a parameter called the degrees of freedom. It can be shown
that the quantity

(n− 1)s2

σ2
∼ χ2

n−1 (9.17)

(Mood et al. 1974). Here the symbol ‘χ2
n−1’ stands for a χ2 distribution with

n − 1 degrees of freedom. The degrees of freedom parameter controls the
shape of the χ2 distribution (Fig. 9.2). The χ2 distribution is only defined
for positive values, because s2 is always positive, and its distribution shifts to
the right (large values become more likely) as n and the degrees of freedom
increases. We will use this sampling distribution to obtain a confidence
interval for σ2 and σ.

Table C gives the quantiles of the χ2 distribution for different values of the
degrees of freedom and the cumulative probability p. We will need to find the
probabilities for certain intervals, but this is more complicated with the χ2

distribution because it is asymmetrical, unlike the normal or t distributions.
In this case, we want to find two positive numbers cα/2,df and c1−α/2,df such
that

P [cα/2,df < X < c1−α/2,df ] = 1− α, (9.18)
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Figure 9.2: Plot of the χ2 distribution for different degrees of freedom

where X has a χ2 distribution and α = 0.05 or α = 0.01. The subscripts α/2
and 1−α/2 for c essentially correspond to values of p in Table C. This gives
the correct probability because

P [cα/2,df < X < c1−α/2,df ] = P [X < c1−α/2,df ]− P [X < cα/2,df ] (9.19)

= 1− α/2− α/2 = 1− α. (9.20)

To see how these values are obtained from Table C, suppose that α = 0.05
and df = 10. To find cα/2,df = c0.05/2,10 = c0.025,10, we look in the column
for p = 0.025 and row for df = 10, and obtain c0.025,10 = 3.247. To find
c1−α/2,df = c1−0.05/2,10 = c0.975,10, we look in the column for p = 0.975 and
row for df = 10, and obtain c0.975,10 = 20.483.

Now suppose that α = 0.01. Using the same technique, we find that
cα/2,df = c0.01/2,10 = c0.005,10 = 2.156, and c1−α/2,df = c1−0.01/2,10 = c0.995,10 =
25.188.

9.2 Confidence intervals

We now have the information needed to calculate confidence intervals. We
will begin with a simple but unrealistic case, finding a confidence interval for
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µ when σ2 is known through other means. This case is unrealistic because σ2

is almost always estimated from the data, but the calculations are simple and
illustrate a general method for finding confidence intervals. We then turn to
finding a confidence intervals for µ, and then σ2, where all parameters are
estimated from the data.

9.2.1 Confidence intervals for µ when σ2 is known

We will use the fact that the quantity Ȳ−µ
σ/
√
n

has a standard normal distribution

to find a confidence interval for µ. Suppose that α is given and we have found
cα such that

P [−cα < Z < cα] = 1− α. (9.21)

(see previous section). Substituting Ȳ−µ
σ/
√
n

for Z we obtain

P

[
−cα <

Ȳ − µ
σ/
√
n
< cα

]
= 1− α. (9.22)

Multiplying both sides by σ/
√
n gives you

P

[
−cα

σ√
n
< Ȳ − µ < cα

σ√
n

]
= 1− α. (9.23)

Multiplying all parts inside the brackets by −1 reverses the signs and in-
equalities to give

P

[
cα

σ√
n
> µ− Ȳ > −cα

σ√
n

]
= 1− α. (9.24)

We now add to Ȳ to all parts inside the brackets to give

P

[
Ȳ + cα

σ√
n
> µ > Ȳ − cα

σ√
n

]
= 1− α, (9.25)

or equivalently

P

[
Ȳ − cα

σ√
n
< µ < Ȳ + cα

σ√
n

]
= 1− α. (9.26)

We call the terms Ȳ − cα σ√
n

and Ȳ + cα
σ√
n

the lower and upper 100(1−α)%

confidence limits for µ (Mood et al. 1974). Confidence intervals are often
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reported in the form (Ȳ − cα
σ√
n
, Ȳ + cα

σ√
n
). Note that the center of the

confidence interval is at Ȳ , our estimate of µ. This interval would be expected
to include the true value of µ with a probability of 1 − α, because this was
the probability set in Eq. 9.21.

It is common practice to set α = 0.05, which corresponds to a 100(1 −
0.05)% = 95% confidence interval. For this case, we would have cα = c0.05 =
1.96 (see previous section). Therefore, the 95% confidence interval would be

(Ȳ − 1.96
σ√
n
, Ȳ + 1.96

σ√
n

). (9.27)

We would expect this interval to include the true µ with a probability of 0.95,
or 95% of the time. However, it follows that the interval will miss µ with
a probability of 0.05, or 5% of the time. This is an important feature
of confidence intervals - they will often but not always enclose the
true parameter value for the population, with the probability set
by α.

If we wanted to be more certain of including µ, we could choose a smaller
α, say α = 0.01, which corresponds to a 100(1 − 0.01)% = 99% confidence
interval. Here we have cα = c0.01 = 2.576, and so the 99% confidence interval
would be

(Ȳ − 2.576
σ√
n
, Ȳ + 2.576

σ√
n

). (9.28)

A 99% confidence interval will necessarily be broader than a 95%
one, because it is constructed to have a higher probability of in-
cluding µ.

Confidence intervals - sample calculation

Suppose we have a sample of n = 10 elytra from female T. dubius beetles (see
Chapter 3 for a description of these data), yielding the values listed below:

5.0 5.1 5.2 5.9 4.8 5.5 4.8 5.1 5.0 5.1

For this sample, we calculate that Ȳ = 5.150. Suppose we have a priori
knowledge that σ = 0.3, although that would be rare in practice. We will
calculate a 95% and 99% confidence interval for µ.

The formula for a 95% confidence interval is

(Ȳ − 1.96
σ√
n
, Ȳ + 1.96

σ√
n

). (9.29)
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Substituting n = 10, Ȳ = 5.150, and σ = 0.3 in the above formula, we obtain

(5.150− 1.96
0.3√

10
, 5.150 + 1.96

0.3√
10

), (9.30)

or
(5.150− 0.186, 5.150 + 0.186), (9.31)

or
(4.964, 5.336). (9.32)

So, the 95% confidence interval for µ is (4.964, 5.336).
For a 99% confidence interval, we use the formula

(Ȳ − 2.576
σ√
n
, Ȳ + 2.576

σ√
n

). (9.33)

Substituting as before, we obtain

(5.150− 2.576
0.3√

10
, 5.150 + 2.576

0.3√
10

), (9.34)

or
(5.150− 0.244, 5.150 + 0.244), (9.35)

or
(4.906, 5.394). (9.36)

The 99% confidence interval is therefore (4.906, 5.394). Note that the 99%
confidence interval is broader than the 95% one, because its lower limit is
lower and upper limit higher.

9.2.2 Confidence intervals for µ when σ2 is estimated

Confidence intervals for µ can also be derived when σ2 is estimated using the
sample variance s2, as will usually be the case in practice. We will make use
of the fact that

Ȳ − µ
s/
√
n
∼ tn−1. (9.37)

Using Table T, we can find a value of cα,n−1 for n−1 degrees of freedom such
that the following equation is true:

P

[
−cα,n−1 <

Ȳ − µ
s/
√
n
< cα,n−1

]
= 1− α. (9.38)
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Rearranging this equation using the same procedures as before, we obtain

P

[
Ȳ − cα,n−1

s√
n
< µ < Ȳ + cα,n−1

s√
n

]
= 1− α. (9.39)

The terms Ȳ −cα,n−1
s√
n

and Ȳ +cα,n−1
s√
n

are the lower and upper 100(1−α)%

confidence limits for µ (Mood et al. 1974). The interval would be reported in
the form (Ȳ − cα,n−1

s√
n
, Ȳ + cα,n−1

s√
n
). The center of the confidence interval

is located at Ȳ , the estimate of µ.
For example, if we let α = 0.05 this corresponds to a 95% confidence

interval of the form

(Ȳ − c0.05,n−1
s√
n
, Ȳ + c0.05,n−1

s√
n

). (9.40)

The value of c0.05,n−1 would need to be determined from Table T, using the
column for 2(1− p) = α = 0.05 and the row for n− 1 degrees freedom.

For α = 0.01, we obtain a 99% confidence interval of the form

(Ȳ − c0.01,n−1
s√
n
, Ȳ + c0.01,n−1

s√
n

). (9.41)

In this case, we would use the column for 2(1 − p) = α = 0.01 to find the
value of c0.01,n−1, using n− 1 degrees freedom.

Confidence interval for µ - sample calculation

We return to the elytra data set, for which we previously calculated that
Ȳ = 5.150, s2 = 0.109, and s = 0.331 for n = 10. We will calculate 95% and
99% confidence intervals for µ.

The formula for a 95% confidence interval is

(Ȳ − c0.05,n−1
s√
n
, Ȳ + c0.05,n−1

s√
n

). (9.42)

For n = 10, we have df = n− 1 = 10− 1 = 9. For a 95% confidence interval,
we therefore look up c0.05,n−1 = c0.05,9 using the column for 2(1 − p) = 0.05
in Table T, choosing the value for 9 degrees of freedom. We obtain c0.05,9 =
2.262. Substituting n = 10, Ȳ = 5.150, s = 0.331, and c0.05,9 = 2.262 in the
above formula, we obtain

(5.150− 2.262
0.331√

10
, 5.150 + 2.262

0.331√
10

), (9.43)
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or

(5.150− 0.237, 5.150 + 0.237), (9.44)

or

(4.913, 5.387). (9.45)

So, the 95% confidence interval for µ is (4.913, 5.387). For a 99% confidence
interval, we find c0.01,n−1 = c0.01,9 for 2(1−p) = 0.01 and 9 degrees of freedom
in Table T, obtaining c0.01,9 = 3.250. Substituting this value in the above
formula, we obtain

(5.150− 3.250
0.331√

10
, 5.150 + 3.250

0.331√
10

), (9.46)

or

(5.150− 0.340, 5.150 + 0.340), (9.47)

or

(4.810, 5.490). (9.48)

The 99% confidence interval is therefore (4.810, 5.490), and as expected is
broader than the 95% one.

9.2.3 Confidence intervals for σ2 and σ

Confidence intervals for σ2 and σ can also be derived, using the fact that

(n− 1)s2

σ2
∼ χ2

n−1 (9.49)

Using Table C for the χ2 distribution, we can find values cα/2,n−1 and c1−α/2,n−1

for n− 1 degrees of freedom such that the following equation is true:

P

[
cα/2,n−1 <

(n− 1)s2

σ2
< c1−α/2,n−1

]
= 1− α. (9.50)

We now rearrange this equation to obtain a confidential interval for σ2. If
we take the inverse of all the inside terms, we obtain

P

[
1

cα/2,n−1

>
σ2

(n− 1)s2
>

1

c1−α/2,n−1

]
= 1− α. (9.51)
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Note that taking the inverse changes the direction of the inequality signs.
Multiplying each term by (n− 1)s2 we obtain

P

[
(n− 1)s2

cα/2,n−1

> σ2 >
(n− 1)s2

c1−α/2,n−1

]
= 1− α, (9.52)

or equivalently

P

[
(n− 1)s2

c1−α/2,n−1

< σ2 <
(n− 1)s2

cα/2,n−1

]
= 1− α. (9.53)

The terms (n−1)s2

c1−α/2,n−1
and (n−1)s2

cα/2,n−1
are the lower and upper 100(1 − α)% con-

fidence limits for σ2, and the interval ( (n−1)s2

c1−α/2,n−1
, (n−1)s2

cα/2,n−1
) is a 100(1 − α)%

confidence interval for σ2 (Mood et al. 1974). The confidence interval for σ2

is not symmetrical around the value s2, our estimate of σ2.
For a 95% confidence interval with α = 0.05, the confidence interval

formula is (
(n− 1)s2

c0.975,n−1

,
(n− 1)s2

c0.025,n−1

)
(9.54)

To find c0.025,n−1, we look across the top row of Table C and find the column
corresponding to p = 0.025, then look for the row corresponding to n − 1
degrees of fredom. To find c0.975,n−1, we use the column corresponding to
p = 0.975, again looking for the row with n− 1 degrees of freedom.

For a 99% confidence interval with α = 0.01, the confidence interval
formula is (

(n− 1)s2

c0.995,n−1

,
(n− 1)s2

c0.005,n−1

)
(9.55)

To find c0.005,n−1, we use the column corresponding to p = 0.005, while the
column for c0.995,n−1 corresponds to p = 0.995. We again use the entries
corresponding to n− 1 degrees of freedom.

We can also obtain a confidence interval for σ =
√
σ2 by tak-

ing the square root of the above confidence limits. In particular, a

confidence interval for σ would be (
√

(n−1)s2

c1−α/2,n−1
,
√

(n−1)s2

cα/2,n−1
).

Confidence interval for σ2 and σ - sample calculation

Recall the elytra data set, for which Ȳ = 5.150 and s2 = 0.109 for n = 10.
Calculate a 95% and 99% confidence interval for σ2 and then σ.
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The formula for a 95% confidence interval is(
(n− 1)s2

c0.975,n−1

,
(n− 1)s2

c0.025,n−1

)
(9.56)

For n = 10, we have df = n− 1 = 10− 1 = 9.
For a 95% confidence interval, with α = 0.05, we find from Table C that

c0.025,n−1 = c0.025,9 = 2.700, and c0.975,n−1 = c0.975,9 = 19.023. Substituting
n = 10, s2 = 0.110, c0.025,9 = 2.700 and c0.975,9 = 19.023 in the above formula,
we obtain (

(10− 1)0.109

19.023
,
(10− 1)0.109

2.700

)
(9.57)

or
(0.052, 0.363). (9.58)

So, the 95% confidence interval for σ2 is (0.052, 0.363). To obtain a 95%
confidence interval for σ we simply take the square root of these values, or
(
√

0.052,
√

0.363, to obtain (0.228, 0.603).
For a 99% confidence interval, the formula is(

(n− 1)s2

c0.995,n−1

,
(n− 1)s2

c0.005,n−1

)
(9.59)

We use Table C to find c0.005,n−1 = c0.005,9 = 1.735, and c0.995,n−1 = c0.995,9 =
23.589. Substituting these values in the above formula, we obtain(

(10− 1)0.109

23.589
,
(10− 1)0.109

1.735

)
(9.60)

or
(0.042, 0.565). (9.61)

The 99% confidence interval of σ2 is therefore (0.042, 0.565). To obtain a 99%
confidence interval for σ, we take the square root and obtain (0.205, 0.752).
Note that the 99% intervals are wider than the corresponding 95% ones.

9.2.4 Confidence intervals - SAS demo

These same calculations can be readily accomplished using proc univariate

in SAS (SAS Institute Inc. 2016). We obtain 95% confidence intervals
by including the option cibasic in the proc univariate line of the program.
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99% confidence intervals may be obtained by specifying alpha=0.01 in the
proc univariate line. See SAS program and Fig. 9.3 - 9.6 below. Similar to
our earlier calculations, the 95% confidence interval was (4.913, 5.387) for µ,
(0.052, 0.365) for σ2, and (0.228, 0.604) for σ. The 99% confidence intervals
can be found further in the output.

9.2.5 Confidence interval size

Confidence intervals are a method of characterizing the precision of parameter
estimates, with narrower intervals generally indicating a population param-
eter like µ is better estimated. How then can an investigator reduce the size
of these confidence intervals? The simplest way is to increase the sample
size n on which the estimate is based. This reduces the size of confidence
intervals for µ because it reduces the magnitude of the quantity cα,n−1s/

√
n,

which determines the width of the interval (see Eq. 9.26). Most of this effect
is through the

√
n term here, but cα,n−1 also becomes smaller for larger n.

Increasing the sample size n also reduces the size of the confidence intervals
for σ2 and σ, although the mechanism is more complex in this case.
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SAS Program

* Confidence_intervals.sas;

title ’Confidence intervals for elytra data’;

data elytra;

input length;

datalines;

5.0

5.1

5.2

5.9

4.8

5.5

4.8

5.1

5.0

5.1

;

run;

* Print data set;

proc print data=elytra;

run;

* Generate 95% confidence intervals and plots;

title2 "95% confidence intervals";

proc univariate cibasic data=elytra;

var length;

histogram length / vscale=count normal;

qqplot length / normal;

run;

* Generate 99% confidence intervals;

title2 "99% confidence intervals";

proc univariate cibasic alpha = 0.01 data=elytra;

var length;

run;

quit;
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Figure 9.3: confidence intervals.sas - proc print
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Figure 9.4: confidence intervals.sas - proc univariate
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Figure 9.5: confidence intervals.sas - proc univariate
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Figure 9.6: confidence intervals.sas - proc univariate
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9.4 Problems

1. Ten adult female Daphnia ambigua (Lei and Armitage 1980) were cul-
tured under laboratory conditions, and their longevity (days) deter-
mined. The following data were obtained.

28 4 22 21 17 21 22 26 15 19

(a) Find Ȳ , s2, and s for these data, then calculate a 95% confidence
interval for µ, σ2 and then σ. Show all your calculations.

(b) Find a 99% confidence interval for µ, σ2 and then σ. Show your
calculations.

(c) Use SAS to find the same confidence intervals as in parts a and b.
List the confidence intervals and test results below. Attach your
SAS program(s) and output.

2. A study was conducted to measure the population growth rate of a lab-
oratory culture of nematodes. A hundred nematodes were each added
to 8 petri dishes of a new growth media, and the number of offspring
counted one generation later. The number of offspring divided by the
initial number of organisms (100) provides an estimate of λ, the finite
growth rate of the population. It is customary to log-transform the
values of λ in such studies, yielding r = ln(λ). The following values of
r were obtained:

2.1 0.8 1.8 1.9 0.8 1.7 0.5 1.6

(a) Find Ȳ , s2, and s for these data, then calculate a 95% confidence
interval for µ, σ2 and then σ. Show all your calculations.

(b) Find a 99% confidence interval for µ, σ2 and then σ. Show your
calculations.

(c) Use SAS to find the same confidence intervals as in parts a and b.
List the confidence intervals and test results below. Attach your
SAS program(s) and output.


