
Chapter 21

Multiple Regression

Multiple regression is a statistical technique for examining the relationship
between a dependent variable Y and multiple independent variables or regres-
sors X1, X2, . . . , Xk. Like with linear regression, the independent variables or
regressors may be fixed values under experimental control, or random vari-
ables. One purpose of multiple regression is to determine whether changes
in any of the independent variables cause changes in Y . This involves test-
ing whether the slope βj for a given independent variable Xj is significantly
different from zero, for each of the independent variables. There is also an
overall test that examines whether any of independent variables (alone or in
combination) affect Y . Another purpose of multiple regression is prediction,
using a set of values for the independent variable to predict the value of Y
along with a confidence interval. A third use is model selection. The ob-
jective here is to find a model that approximates the data with the fewest
variables, involving a trade-off between model fit and model complexity. We
will examine a popular method of model selection that uses Akaike’s Infor-
mation Criterion or AIC (Akaike 1974; Anderson et al. 2000, Burnham &
Anderson 2002).

We will first illustrate multiple regression using a relatively simple data
set from a study of southern pine beetle, Dendroctonus frontalis (Reeve et al.
1998). We previously used this study to examine the relationship between
the number of beetles added to caged trees and how this affected their attack
density. We now examine how attack density and the density of a competitor,
bluestain fungus, affects the survival rate of beetle offspring (from egg to
emerging adult). High attack densities imply a high density of adult beetles
within the tree, and this crowding could reduce survival of their offspring
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(see also Coulson et al. 1976). High levels of bluestain fungus are also
known to reduce survival, by interfering with the beetle’s own symbiotic
fungus (Hofstetter et al. 2006).
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Table 21.1: Example 1 - Effects of attack density and bluestain fungus on the
survival of D. frontalis brood from egg to emergence (Reeve et al. 1998). The
dependent variable was the log-transformed survival rate of the beetle off-
spring, while attack density (attacks per 100 cm2 of bark) and the proportion
of bluestained phloem were the independent variables.

X1i = Attack density X2i = Bluestain Survival Yi = ln(Survival) i
1.250 0.000 0.107 -2.235 1
2.656 0.481 0.715 -0.335 2
7.334 0.171 0.036 -3.324 3
1.603 0.352 0.188 -1.671 4
2.622 0.016 0.438 -0.826 5
1.000 0.000 0.585 -0.536 6
4.342 0.185 0.115 -2.163 7
5.233 0.018 0.257 -1.359 8
2.500 0.410 0.032 -3.442 9
3.250 0.015 0.350 -1.050 10
6.000 0.007 0.161 -1.826 11
4.750 0.000 0.073 -2.617 12
2.500 0.095 0.219 -1.519 13
8.750 0.033 0.028 -3.576 14
6.000 0.015 0.294 -1.224 15
5.000 0.105 0.207 -1.575 16
7.149 0.025 0.227 -1.483 17
6.750 0.015 0.040 -3.219 18
7.500 0.043 0.089 -2.419 19
2.500 0.073 0.176 -1.737 20
5.000 0.055 0.084 -2.477 21
2.250 0.023 0.203 -1.595 22
1.250 0.123 0.074 -2.604 23
4.750 0.035 0.126 -2.071 24
4.500 0.212 0.290 -1.238 25
9.557 0.166 0.010 -4.605 26
5.000 0.338 0.207 -1.575 27
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We will use another data set to illustrate prediction in multiple regression.
Soul et al. (2013) were interested in predicting endocranial volume (brain
size) in extinct mammals, where only the skull length, height, and width are
available. For this purpose, they developed a multiple regression model using
existing species as the observations, with endocranial volume the dependent
variable, and skull length, width and height the independent ones. A portion
of these observations are listed below (see https://datadryad.org for the full
data set). We will fit a multiple regression model to these observations, then
use them to predict endocranial volume for two hypothetical fossils, a mouse
and a bear.
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Table 21.2: Example 2 - Skull length, width, height, endocranial volume, and species name (Soul et al.
2013). The dependent variable was endocranial volume, estimated using the mass of glass beads filling the
skull.

Length (mm) Width (mm) Height (mm) Volume (g) i Common name
15.04 11.29 6.61 0.38 1 Pygmy glider
52.40 30.94 25.68 12.36 2 Rufous kangaroo rat
75.87 52.79 39.45 56.70 3 Howler monkey
41.73 25.70 16.79 5.68 4 Scaley-tailed squirrel
39.71 26.87 17.13 5.92 5 Lord derby’s flying squirrel
18.90 12.62 7.61 0.51 6 Yellow-footed antechinus
15.10 11.69 7.06 0.46 7 Brown antechinus

123.70 73.89 63.93 150.53 8 Pronghorn
46.75 28.70 18.45 6.51 9 Mountain beaver

154.32 103.77 71.95 284.03 10 Antarctic fur seal
133.39 59.75 72.60 128.49 11 Babiroussa

etc.

32.90 19.83 14.73 3.19 185 Tree shrew
32.15 20.33 13.95 3.17 186 Painted tree shrew

200.23 98.99 84.53 358.82 187 Brown bear
179.70 95.48 75.51 302.72 188 Sloth bear
67.48 42.35 29.66 24.79 189 Ruffled lemur
70.78 30.98 28.08 17.91 190 Rasse
67.05 54.15 44.99 56.71 191 Wombat
70.36 45.09 37.72 38.43 192 Arctic fox
80.73 47.96 39.45 48.55 193 Fox
13.54 9.24 7.13 0.36 194 Meadow jumping mouse
13.15 9.05 7.00 - 195 Fossil mouse

190.17 97.32 80.31 - 196 Fossil bear
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21.1 Multiple regression model

Suppose we want to model the observations for a data set like Example
1, where a dependent variable Y is observed along with two independent
variables X1 and X2. Let Yi, X1i, and X2i be the ith set of values. The
multiple regression model takes the form

Yi = β0 + β1X1i + β2X2i + εi, (21.1)

where β0 is the intercept, β1 and β2 are the slopes or regression coefficients
for X1 and X2, and εi ∼ N(0, σ2) (Draper & Smith 1981; Kutner et al. 2005,
Sheather 2009). This equation defines a plane in three dimensions, which we
will later visualize for the Example 1 data.

More generally, the model for k different independent variablesX1, X2, . . . , Xk

takes the form

Yi = β0 + β1X1i + β2X2i + . . .+ βkXki + εi. (21.2)

Here, the parameters β1, β2, . . . , βk are the slopes for each independent vari-
able. While this model appears complicated, there is a simple interpretation
of the regression coefficients. The slope βj can be thought of as the
change in Y per unit change in Xj, while holding all the other
variables constant. There are also specific plots designed to visualize this
model for any number of independent variables.

21.2 Multiple regression in matrix form

We will now show how the multiple regression model can be expressed in
matrix form (Draper & Smith 1981). This will greatly simplify later devel-
opments, and in any event the matrix form of the model is commonly used
in the statistical literature as well as software documentation. If you are
unfamiliar with matrices, there are many online resources that provide an
introduction to matrices and linear algebra. The textbook by Tabachnik and
Fidell (2001) also provides a useful summary of essential concepts (see their
Appendix A). In the following, we will briefly review various matrix opera-
tions and then apply them to multiple regression. Chapter 24 of this text
lists a SAS program that carries out these operations using proc iml (SAS
Institute Inc. 2018a).
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A matrix is a rectangular collection of numbers (or other quantities) ar-
ranged in rows and columns, enclosed in a set of parentheses or brackets.
A vector is a simple type of matrix consisting of a single column or row of
numbers. Matrices and vectors can be added, multiplied, transposed, and
even inverted in their own unique way, and these operations allow one to
express the multiple regression model in a compact way as well as estimate
the parameters of this model.

We will first make use of matrix addition and multiplication to write
the multiple regression model. Suppose we have two vectors A and B of the
following form:

A =

ab
c

 and B =

de
f

 . (21.3)

To add these two vectors, we simply add the elements of each one to obtain

A+B =

a+ d
b+ e
c+ f

 . (21.4)

For example, suppose

A =

1
2
3

 and B =

4
5
6

 . (21.5)

Then

A+B =

1 + 4
2 + 5
3 + 6

 =

5
7
9

 . (21.6)

Note that the two vectors (or matrices) must have the same dimensions or
shape for addition to work.

For the multiple regression model, we will also need to multiply a matrix
by a vector. Suppose that we have two matrices C and D of the following
form:

C =

a d
b e
c f

 and D =

(
g
h

)
. (21.7)
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Then

CD =

a d
b e
c f

× (g
h

)
=

ag + dh
bg + eh
cg + fh

 . (21.8)

Note the pattern in the multiplication process. You take the elements in
each row of C and multiply them by the column elements of D, then add
the result to obtain CD. In this case, the multiplication process takes a 3 ×
2 matrix (3 rows and 2 columns) and a 2 × 1 matrix, and produces a 3 × 1
matrix. Thus, the numbers of rows and columns in the product depends on
the number of rows in first matrix and columns in the second – this is true of
matrix multiplication in general. The number of columns in the first matrix
and rows in the second matrix must also match for matrix multiplication to
be possible.

As an example of matrix multiplication, suppose that

C =

1 4
2 5
3 6

 and D =

(
7
8

)
. (21.9)

Then

CD =

1 · 7 + 4 · 8
2 · 7 + 5 · 8
3 · 7 + 6 · 8

 =

39
54
69

 . (21.10)

Another matrix operation we will use later is the transpose of a matrix.
This operation takes the columns of a matrix and turns them into the rows
of a new matrix. For example, suppose we have a matrix

F =


a e
b f
c g
d h

 . (21.11)

The transpose of F (written as F ′) is defined to be

F ′ =

(
a b c d
e f g h

)
. (21.12)

For example, suppose

F =


1 5
2 6
3 7
4 8

 . (21.13)
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Then

F ′ =

(
1 2 3 4
5 6 7 8

)
. (21.14)

Now suppose we have a multiple regression problem with k = 2 indepen-
dent variables and n observations, similar to the Example 1 data set. The
standard model equation for this problem would be

Yi = β0 + β1X1i + β2X2i + εi, (21.15)

for i = 1 to n. If we write out the full system of equations for each observation
or value of i, we would obtain n different equations:

Y1 = β0 + β1X11 + β2X21 + ε1
Y2 = β0 + β1X12 + β2X22 + ε2
Y3 = β0 + β1X13 + β2X23 + ε3

...
Yn = β0 + β1X1n + β2X2n + εn

 . (21.16)

Using the definition of matrix addition, these equations can be rewritten in
matrix form as 

Y1

Y2

Y3
...
Yn

 =


β0 + β1X11 + β2X21

β0 + β1X12 + β2X22

β0 + β1X13 + β2X23
...

β0 + β1X1n + β2X2n

+


ε1
ε2
ε3
...
εn

 . (21.17)

Using the definition of matrix multiplication, a further simplification is pos-
sible: 

Y1

Y2

Y3
...
Yn

 =


1 X11 X21

1 X12 X22

1 X13 X23
...

...
...

1 X1n X2n


β0

β1

β2

+


ε1
ε2
ε3
...
εn

 . (21.18)

As a final step, this equation can be written in the form

Y = Xβ + ε (21.19)
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where

Y =


Y1

Y2

Y3
...
Yn

 ,β =

β0

β1

β2

 , ε =


ε1
ε2
ε3
...
εn

 , and (21.20)

X =


1 X11 X21

1 X12 X22

1 X13 X23
...

...
...

1 X1n X2n

 (21.21)

For an actual data set, these matrices and vectors would contain the values of
Y , X1i, and X2i. The matrix X is often called the design matrix, because
it basically describes the design of the study, including the values of the
independent variables, their number, and the overall sample size.

In general, the multiple regression model for k independent variables or
regressors can be expressed in the same simple form

Y = Xβ + ε (21.22)

where

Y =


Y1

Y2

Y3
...
Yn

 ,β =


β0

β1

β2
...
βk

 , ε =


ε1
ε2
ε3
...
εn

 , and (21.23)

X =


1 X11 X21 . . . Xk1

1 X12 X22 . . . Xk2

1 X13 X23 . . . Xk3
...

...
...

...
...

1 X1n X2n . . . Xkn

 . (21.24)

21.3 Multiple regression and likelihood

We will use maximum likelihood to estimate the parameters in the multiple
regression model, making use of the matrix form of the model. Suppose
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we have k = 2 independent variables similar to the Example 1 data. The
multiple regression model in this case would be

Yi = β0 + β1X1i + β2X2i + εi. (21.25)

This model has four parameters to estimate, in particular β0, β1, β2, and
σ2. Consider the first observation in the Example 1 data, for which Y1 =
−2.235, X11 = 1.250, and X21 = 0.000. For this observation, the model states
that Y1 ∼ N(β0 + β1X11 + β2X21, σ

2), and so the likelihood would be

L1 =
1√

2πσ2
e−

1
2

(Y1−(β0+β1X11+β2X21))
2

σ2 =
1√

2πσ2
e−

1
2

(−2.235−(β0+β11.25+β20.000))
2

σ2

(21.26)

The overall likelihood is then defined as the product of the likelihoods for
each observation, in particular

L(β0, β1, β2, σ
2) = L1 × L2 × . . .× Ln. (21.27)

Finding the maximum likelihood estimates involves maximizing this quantity
with respect to the parameters β0, β1, β2, and σ2. Similar to linear regression,
we can gain some insight into the estimation process by rearranging the
likelihood function. It can be written in the form

L(β0, β1, β2, σ
2) =

(
1√

2πσ2

)n
e−

1
2

∑n
i=1(Yi−(β0+β1X1i+β2X2i))

2

σ2 . (21.28)

Focusing on the sum in this expression, we see that values of β0, β1, and
β2 that minimize the sum of the squared terms will maximize the overall
likelihood. Similar to linear regression, these are also the least squares
estimates because they minimize the sum of these squared terms (Draper &
Smith 1981). We will later see that they minimize the sum of the squared
residuals from the plane defined by β0, β1, and β2.

Now consider the case where there are k independent variables, so that
the model has k + 2 parameters (β0, β1, β2, . . . , βk, σ

2). The likelihood L
would have the same structure as above, but with more parameters and
independent variables. The maximum likelihood estimates can be found by
taking the derivative of L (actually logL) with respect to every parameter,
setting these derivatives equal to zero, then solving for the parameter values
that satisfy these equations. The result is a complex system of equations
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involving the data set and parameters. Using matrix algebra, however, the
equations for β0, β1, . . . , βk can expressed in a very compact form:

X ′Xβ = X ′Y (21.29)

Here X,β, and Y are from the matrix version of the multiple regression
model. The idea then is solve this equation for β using matrix operations.
This set of equations are called the normal equations (Draper and Smith
1981; Kutner et al 2005; Sheather 2009). They look a bit like the simple
equation xb = y, where x and y are known values. You would solve this
equation for b by multiplying both sides by x−1, to obtain x−1xb = x−1y, or
b = x−1y = y/x. What we need is the matrix equivalent of x−1.

Note that the inverse of x has the property x−1x = 1. The inverse of a
matrix has the same property, but the equivalent of the number 1 is called
the identity matrix, written as I. It is defined as a square matrix with ones
on the diagonal and zeroes everywhere else. For example, the 3× 3 identity
matrix is

I =

1 0 0
0 1 0
0 0 1

 . (21.30)

Similar to the number 1, if you multiply a matrix A by I the result is equal
to A. For example, suppose that A is defined by the matrix

A =

1 6 4
3 7 6
4 1 9

 . (21.31)

Then we have

AI =

1 6 4
3 7 6
4 1 9

1 0 0
0 1 0
0 0 1

 (21.32)

=

1 · 1 + 6 · 0 + 4 · 0 1 · 0 + 6 · 1 + 4 · 0 1 · 0 + 6 · 0 + 4 · 1
3 · 1 + 7 · 0 + 6 · 0 3 · 0 + 7 · 1 + 6 · 0 3 · 0 + 7 · 0 + 6 · 1
4 · 1 + 1 · 0 + 9 · 0 4 · 0 + 1 · 1 + 9 · 0 4 · 0 + 1 · 0 + 9 · 1



=

1 6 4
3 7 6
4 1 9

 = A
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Now we can define the inverse of a matrix for a square matrix like A.
The inverse of A, written as A−1, is a matrix for which A−1A = I and also
AA−1 = I. Note that the order of multiplication does not matter in this
case, although it would for other types of matrices. There are a number of
numerical techniques for finding the inverse of a matrix, but we will not be
concerned with these details. The inverse of A is the matrix

A−1 =

−0.934 0.820 −0.131
0.049 0.115 −0.098
0.410 −0.377 0.180

 . (21.33)

Multiplying A−1 and A, we obtain

A−1A =

−0.934 · 1 + 0.820 · 3− 0.131 · 4 . . . . . .
0.049 · 1 + 0.115 · 3− 0.098 · 4 . . . . . .
0.041 · 1− 0.377 · 3 + 0.180 · 4 . . . . . .

 (21.34)

=

 1.002 0.005 0.005
0.002 1.001 0.004
−0.001 0.001 0.998

 ≈ I. (21.35)

The result is not exact because of rounding in the values of A−1.
We are now ready to solve the normal equations for β using matrix op-

erations. Recall that these equations are of the form

X ′Xβ = X ′Y (21.36)

Multiplying both sides of this equation by the inverse of X ′X, denoted by
(X ′X)−1, we obtain

(X ′X)−1X ′Xβ = (X ′X)−1X ′Y (21.37)

or
Iβ = (X ′X)−1X ′Y (21.38)

from which it follows that

β̂ = (X ′X)−1X ′Y (21.39)

Here β̂ is a vector containing the maximum likelihood (or least squares)
estimates β̂0, β̂1, β̂2, . . . , β̂k of the model parameters, except for σ2. This is
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the method used by SAS and other statistical packages to estimate the model
parameters. We will later see how the elements of (X ′X)−1 are also used
to calculate standard errors and confidence intervals. Similar methods are
used to estimate the parameters for ANOVA models. In this case, the design
matrix encodes the various treatment combinations and interactions.

The estimates of the model parameters can be used to generated a pre-
dicted value for each observation in the data set, of the form

Ŷi = β̂0 + β̂1X1i + . . .+ β̂kXki. (21.40)

The residual of each observation is the difference between the observed and
predicted values, namely Yi − Ŷi.

Maximum likelihood also provides an estimator of σ2 similar to linear
regression. Define an error sum of squares by the equation

SSerror =
n∑
i=1

(
Yi − (β̂0 + β̂1X1i + . . .+ β̂kXki)

)2

=
n∑
i=1

(Yi − Ŷi)2. (21.41)

The multiple regression form of MSerror, and an estimator of σ2, is obtained
by dividing SSerror by n− k − 1 degrees of freedom:

MSerror =
SSerror
n− k − 1

= σ̂2. (21.42)

SSregression describes variation in the data explained by the regression
model, similar to linear regression. It is defined as

SSregression =
n∑
i=1

(Ŷi − Ȳ )2 (21.43)

and has k degrees of freedom. We therefore have

MSregression =
SSregression

k
. (21.44)

SSregression and MSregression will be large if Ŷi varies strongly with respect to
one or more of the independent variables (X1i, X2i, . . . , Xki).

The total sum of squares for multiple regression is defined as

SStotal =
n∑
i=1

(Yi − Ȳ )2 (21.45)
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and has n − 1 degrees of freedom. Similar to linear regression, there is an
additive relationship among the different sums of squares:

SSregression + SSerror = SStotal. (21.46)

We can use the two mean squares to construct an overall F test for the
multiple regression, which tests H0 : β1 = β2 = . . . = βk = 0. This null
hypothesis basically says none of the independent variables (X1i, . . . , Xki)
affect the dependent one (Yi). The alternative hypothesis is that one or
more slopes are different from zero (H1 : βj 6= 0 for some j). If this test is
significant, it suggests one or more of the independent variables are affecting
the dependent variable, but not which ones. The test statistic is

Fs =
MSregression
MSerror

. (21.47)

Under H0, Fs has an F distribution with df1 = k and df2 = n − k − 1 the
degrees of freedom. Note that we encountered a similar test in the SAS
output for ANOVA designs, but in ANOVA we were more concerned with
tests of each treatment effect, not in testing the overall model. It is also a
likelihood ratio test using the H0 and H1 models for the data (McCulloch &
Searle 2001).

We can organize the different sum of squares and mean squares into
an ANOVA table for multiple regression (Table 21.3). It lists the different
sources of variation in the data (regression, error, and total), their degrees
of freedom, as well as the overall F test.
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Table 21.3: General ANOVA table for multiple regression, showing formulas for different mean squares and
the overall F test.

Source df Sum of squares Mean square Fs
Regression k SSregression MSregression = SSregression/k MSregression/MSerror
Error n− k − 1 SSerror MSerror = SSerror/(n− k − 1)
Total n− 1 SStotal
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21.4 Tests and confidence intervals for β

We next develop tests and confidence intervals for the parameters of the
multiple regression model, in particular the slope parameters β1, β2, . . . , βk
and also the intercept β0. These will help us evaluate which (if any) of the
independent variables affect the dependent one. These tests and confidence
intervals are based on the maximum likelihood estimates of each βj and its
standard error sβj , given by the formula

sβ̂j =
√
σ̂2dj+1,j+1, (21.48)

for j = 0, 1, . . . , k. Here σ̂2 = MSerror and dj+1,j+1 is the entry in the
(j + 1)th row and column of the matrix (X ′X)−1, i.e., the diagonal entries
of this matrix (Draper & Smith 1981). For example, for β0 and j = 0 we
would use d0+1,0+1 = d11, the entry in the first row and column. It can then
be shown that the quantity

β̂j − βj
sβ̂j

(21.49)

has a t distribution with n−k−1 degrees of freedom, the same as for MSerror.
This fact can be used to derive tests and confidence intervals for each βj.

Suppose we want to test H0 : βj = βj0 vs. H1 : βj 6= βj0, where βj0 takes
some value of interest. We would use the test statistic

Ts =
β̂j − βj0
sβ̂j

. (21.50)

Under H0, Ts has a t distribution with n − k − 1 degrees of freedom, and
we would reject H0 for sufficiently large values of this statistic. The most
commonly used null hypothesis tested is H0 : βj = 0 – if this test is significant
it suggests the slope for Xj differs from zero, and so Xj is causing a change
in Y . Note that this test examines the unique effect of Xj on Y with all the
other independent variables in the model, in effect pitting Xj against all the
other independent variables.

Confidence intervals can also be derived using the t distribution with
n− k − 1 degrees of freedom. The interval

(β̂j − cα,n−k−1sβ̂j , β̂j + cα,n−k−1sβ̂j) (21.51)
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is a 100(1−α)% confidence interval for βj, where cα,n−k−1 could be obtained
from Table T (see Chapter 9 for details). We will let SAS handle the details
for these confidence intervals as well as tests.

Chapter 24 of this text lists a SAS program that carries out a multiple
regression analysis for the Example 1 data using proc iml and matrix opera-
tions. This includes constructing the design matrixX and vector Y from the
observations, estimating β, then calculating MSerror, MSregression, and sβ̂j .
It also conducts the overall F test of the model and t tests for the regression
coefficients.

21.5 Standardized regression coefficients

The regression coefficient βj is the change in Y per unit ofXj (the slope) given
the other independent variables in the model. The magnitude of βj is affected
by the strength of this relationship as well as the units of measurement
for the variables. This can make it difficult to compare the relative effects
of the different independent variables on Y , because their units could be
quite different. Standardized regression coefficients solve this problem by
expressing the slope in units of the standard deviation of Y and Xj (Kutner
et al. 2005). They are calculated using the formula

β̂′j = β̂j
sXj
sY

, (21.52)

where sXj is the sample standard deviation of Xj and sY is the sample stan-
dard deviation of Y . As a result of this scaling the standardized coefficients
are dimensionless, similar to a correlation coefficient (Chapter 18).

21.6 R2 values

We can define an R2 value for multiple regression similar to one for linear
regression. It is the proportion of the total sum of squares explained by the
regression model, or

R2 =
SSregression
SStotal

=
SSregression

SSregression + SSerror
. (21.53)

Large R2 values suggest the regression model explains most of the variation
(sum of squares) in the data, and vice versa for small R2 values.
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21.7 Multiple regression for Example 1 - SAS

demo

We next conduct a multiple regression analysis of the Example 1 data using
proc reg (SAS Institute Inc. 2018b). See program below. It is similar in
structure to previous linear regression and ANOVA programs, but we will
use proc reg rather than proc glm because it has several useful features for
multiple regression. We first input the observations using a data step, apply-
ing transformations if necessary. Theoretical models of competition suggest
a linear relationship between the log of the survival rate and measures of den-
sity like attack density and bluestain levels, so we define y = log(survival)

in the data step. The two independent variables are attack density (defined
as satkden) and bluestain levels (blueden).

As a first step in the analysis, it is often useful to plot the values of
the dependent variables vs. the independent ones, to see their individual
effects. We will use proc gplot (SAS Institute Inc. 2016) for this purpose,
using commands similar to the ones for linear regression (Chapter 17). The
program fits a regression line through the points in each graph, but these are
the lines for linear, not multiple, regression. Special techniques are needed
visualize the fitted model for multiple regression, which we will later examine.

The next section of the program conducts the multiple regression using
proc reg. The plots=diagnostics option generates graphs that are used to ex-
amine the assumptions of multiple regression, similar to ANOVA and linear
regression. The model statement tells SAS the multiple regression model, in-
cluding the dependent variable (y) and the two independent variables (satkden
and blueden). Note the similarity of the model statement to the multiple re-
gression model with two independent variables. The option clb requests con-
fidence intervals for the model parameters while stb displays the standardized
regression coefficients. We will examine the remaining options later.

Examining the two proc gplot graphs, we see that log survival rate ap-
peared to decrease with attack density, while bluestain had no obvious effect
(Fig. 21.2, 21.3). The proc reg output contains the overall F for the multi-
ple regression as well as separate t tests for the independent variables (Fig.
21.4). We see that the overall test was significant (F2,24 = 5.45, P = 0.0112),
suggesting one or more of the independent variables affected survival. The
t test for attack density was highly significant (t24 = −3.30, P = 0.0030)
while bluestain was nonsignificant (t24 = −0.65, P = 0.5243). The slope or
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regression coefficient for attack density was negative (β = −0.2391), indicat-
ing survival decreases with attack density, as was the coefficient for bluestain
(β = −0.8096). This suggests that bluestain actually had a greater effect
than attack density, but this is because their units are quite different. If we
examine the standardized regression coefficients, we see that attack density
had a larger coefficient (β′ = −0.5682) than bluestain (β′ = −0.1113), and
so had a larger effect on survival. The multiple regression model explained
about 31% of the variation in the data (R2 = 0.3122). The usual homo-
geneity of variances and normality assumptions also appear satisfied (Fig.
21.5).
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SAS Program

* SPBsurvival.sas;

title "Multiple regression for SPB survival data";

data SPB;

input satkden blueden survival;

* Apply transformations here;

y = log(survival);

datalines;

1.250 0.000 0.107

2.656 0.481 0.715

7.334 0.171 0.036

1.603 0.352 0.188

2.622 0.016 0.438

etc.

5.000 0.338 0.207

;

run;

* Print data set;

proc print data=SPB;

run;

* Plot y vs. x variables;

proc gplot data=SPB;

plot y*(satkden blueden) / vaxis=axis1 haxis=axis1;

symbol1 i=rl v=star c=black height=2 width=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Multiple regression analysis;

proc reg plots=diagnostics data=SPB;

* Specify regression model and request residual-residual plots;

model y = satkden blueden / clb stb tol vif partial;

run;

quit;
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etc.

Figure 21.1: SPBsurvival.sas - proc print
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Figure 21.2: SPBsurvival.sas - proc gplot

Figure 21.3: SPBsurvival.sas - proc gplot
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Figure 21.4: SPBsurvival.sas - proc reg
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Figure 21.5: SPBsurvival.sas - proc reg
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Figure 21.6: SPBsurvival.sas - proc reg
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21.8 Visualizing the multiple regression model

We can visualize the model fitted to the Example 1 data using a three-
dimensional scatter plot (Fig. 21.7). The maximum likelihood (and least
squares) process minimizes the squared residuals between the observations
and the plane defined by the multiple regression model. From this graph, we
can see that survival decreased with increasing attack density while bluestain
had a minimal effect. The slope of the plane with respect to attack density
is the same as the estimated slope in Fig. 21.4, and similarly for bluestain.
This kind of graph would not work for more than two independent variables,
because it would have more than three dimensions.

Another type of graph that works for any number of independent variables
are residual-residual plots, or added-variable plots (Kutner et al. 2005).
As the name suggests, they are constructed using two sets of residuals. Sup-
pose we are interested in visualizing the effect of X1 on Y . The first set of
residuals is obtained from a multiple regression of X1 on X2, X3, . . . , Xk, with
X1 the dependent variable. The second set of residuals is from a multiple
regression of Y on X2, X3, . . . , Xk, excluding X1. This procedure essentially
subtracts the effect of X2, X3, . . . , Xk on both Y and X1. If we plot the two
sets of residuals against each other, this would show the unique effect of X1

on Y . If we were to fit a line through these residuals using linear regression,
the slope of the line would be equal to β̂1 from the full multiple regression
(Y vs. X1, X2, . . . , Xk).

Residual-residual plots are requested in SAS using the partial option
in the model statement for proc reg, generating the output in Fig. 21.6.
Besides visualizing the relationships between the dependent and indepen-
dent variables, these plots can be used to identify outliers and observations
that strongly influence the regression lines, known as high leverage points
(Sheather 2009). They can also be used to determine whether the relation-
ship between Y and a given X variable is in fact linear, as assumed by the
multiple regression model. Examining these plots for the Example 1 data,
the relationship between survival rates and attack density (or bluestain) ap-
peared linear and there were no large outliers.
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Figure 21.7: Multiple regression model fitted to the Example 1 data (see SAS
program for variable definitions). The vertical red lines are the residuals for
each observation (Yi − Ŷi). This plot used R code from Chang (2023).
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21.9 Collinearity in multiple regression

In a multiple regression analysis, there may sometimes be strong linear rela-
tionships or correlations among two or more independent variables, a prob-
lem called collinearity. This can cause issues in estimating the regression
coefficients, including large standard errors and confidence intervals, and
potentially large values for the estimates themselves. Another symptom of
collinearity are independent variables that are nonsignificant even though the
overall F test is significant. See Kutner et al. (2005) and Sheather (2009)
for further details.

One diagnostic tool for detecting collinearity are tolerance values. They
are calculated as follows. Suppose we want the tolerance value for the inde-
pendent variable X1. We would run a multiple regression of X1 on X2, . . . , Xk

and find the R2(X1) value for this regression. The tolerance value for X1 is
defined as 1−R2(X1). If X1 is strongly collinear with one or more indepen-
dent variables, it will have a small tolerance value because R2(X1) will be
large. Another common measure is the variance inflation factor, defined
as 1/(1−R2(X1)). This is just the inverse of the tolerance value, and will be
large if there is strong collinearity among the independent variables. A com-
mon rule of thumb is that collinearity is a problem when a variance inflation
factor is sufficient large, say 5 or 10 (Kutner et al. 2005; Sheather 2009)

The tolerance and variance inflation factors are requested using the op-
tions tol and vif the model statement for proc reg. Examining these quan-
tities for the Example 1 data set, we see the variance inflation factors were
small for both independent variables (Fig. 21.4). The variance inflation fac-
tors were the same here because there were only two independent variables
in the model.

21.10 Multiple regression for Example 2 - SAS

demo

We now analyze the Example 2 data set using SAS and proc reg (see program
below). Here the objective is to predict endocranial volume for fossil skulls
using a multiple regression model fitted to existing species. We first log-
transform all the variables in a data step. This makes intuitive sense, because
we would expect endocranial volume to be the product of length, height, and
width. After log-transform this would yield an additive model that can be
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fitted using multiple regression. The dependent variable in the analysis is
then logV, while logL, logH, and logW are the independent ones. Note the
last two observations have missing values for endocranial volume – we will
use multiple regression to predict it for these fossil skulls where endocranial
volume is unavailable.

Plots generated using proc gplot show a strong linear relationship be-
tween logV and all three independent variables (Fig. 21.9-21.11). We then
conduct the multiple regression using proc reg and the same syntax as in
Example 1. Two new options for the model statement are clm and cli. The
clm option generates a 95% confidence interval for the mean of Yi for each
observation, while cli generates a 95% prediction interval for a single Yi
(see Chapter 17). These intervals are calculated for all the observations,
including the two fossil skulls. Examining the output (Fig. 21.12), we see
that the overall F test was highly significant (F3,190 = 8498.88, P < 0.0001),
as were the individual t tests for length (t190 = 3.77, P = 0.0002), height
(t190 = 9.55, P < 0.0001), and width (t190 = 14.11, P < 0.0001). The stan-
dardized regression coefficients suggest that width had the greatest effect on
endocranial volume (β′ = 0.5097), followed by height (β′ = 0.3873) and then
width (β′ = 0.1052). Combined, these three variables explained 99.3% of the
variation in volume (R2 = 0.9926), suggesting the model would be useful for
prediction. The confidence and prediction intervals for the two fossil skulls
are shown at the bottom of Fig. 21.13.

A possible concern with this analysis were large variance inflation factors
for all three independent variables (Fig. 21.12). Despite these large values,
the individual t tests for these variables were all highly significant, suggesting
they each contribute something unique to the model. Kutner et al. (2005)
also argue that collinearity is less important when prediction is primary goal
of the analysis, as in the Example 2 regression.
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SAS Program

* Endocranial4.sas;

title "Multiple regression for endocranial volume in mammals";

data ECVdat;

input Length Width Height Volume Common_name :$30.;

* Apply transformations here;

logV = log(Volume);

logL = log(Length);

logH = log(Height);

logW = log(Width);

datalines;

15.04 11.29 6.61 0.38 Pygmy_glider

52.40 30.94 25.68 12.36 Rufous_kangaroo_rat

75.87 52.79 39.45 56.70 Howler_monkey

41.73 25.70 16.79 5.68 Scaley-tailed_squirrel

39.71 26.87 17.13 5.92 Lord_derby’s_flying_squirrel

etc.

70.36 45.09 37.72 38.43 Arctic_fox

80.73 47.96 39.45 48.55 Fox

13.54 9.24 7.13 0.36 Meadow_jumping_mouse

13.15 9.05 7.00 . Fossil_mouse

190.17 97.32 80.31 . Fossil_bear

;

run;

* Print data set;

proc print data=ECVdat;

run;

* Plot y vs. x variables;

proc gplot data=ECVdat;

plot logV*(logL logH logW) / vaxis=axis1 haxis=axis1;

symbol1 i=rl v=star c=black height=2 width=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Multiple regression;

proc reg plots=diagnostics data=ECVdat;

* Specify variables in regression model;

model logV = logL logH logW / clb stb tol vif partial clm cli;

run;

quit;
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etc.

Figure 21.8: Endocranial4.sas - proc print
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Figure 21.9: Endocranial4.sas - proc gplot

Figure 21.10: Endocranial4.sas - proc gplot
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Figure 21.11: Endocranial4.sas - proc gplot
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Figure 21.12: Endocranial4.sas - proc reg
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etc.

Figure 21.13: Endocranial4.sas - proc reg
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21.11 Power analysis for multiple regression

The appropriate sample size for a multiple regression study can be deter-
mined through a power analysis. Similar to power analysis in ANOVA, we
must specify the Type I error rate α, the desired power level, and the size of
the effect we wish to detect. The effect size in power analyses for multiple
regression is often expressed in terms of an R2 value, which combines the
effects of the independent variables (through SSregression) and the variability
of the observations (SSerror).

The SAS procedure power can do a power analysis for multiple regression
using the multreg option. We first specify the Type I error rate and desired
power using the alpha and power options (see SAS program below). We
will be interested in the sample sizes needed for the overall F test of H0 :
β1 = β2 = . . . = βk = 0, which is equivalent to testing H0 : R2 = 0.
This value of R2 is specified using the rquaredreduced option. The values
of R2 under the alternative hypothesis (H1 : βj 6= 0 for some j) are then
specified using the rsquarefull option. Some plausible values for ecological
or behavioral data are 0.1, 0.3, and 0.6, but any value can be used. We must
also specify the number of independent variables (k) under H0 and H1, using
the nreducedpredictors and nfullpredictors options. We set the ntotal option
to a missing value, which tells power to solve for the sample size n that gives
the desired power.
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SAS Program

* multreg_power.sas;

title ’Power Analysis for Multiple Regression’;

proc power;

multreg

model = fixed

alpha = 0.05

power = 0.8

rsquarereduced = 0

rsquarefull = 0.1 0.3 0.6

nreducedpredictors = 0

nfullpredictors = 1 2 3 4 5 6 7 8 9 10 20 30 40 50

ntotal = . ;

run;

quit;

Table 21.4 summarizes the result of this analysis, with the entries the
sample size n to obtain the desired power. Note that the effect size (R2

under H1) strongly influences sample size, and that more observations are
necessary to maintain power as the number of independent variables (k) is
increased. For one predictor, the sample size specified is for a simple linear
regression.

The power procedure can be used to find the sample size for other sce-
narios, including tests of the individual regression coefficients (H0 : βj = 0).
The basic idea is to specify an R2 value with and without Xj in the model,
with the number of predictors in the full and reduced model differing by 1.
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Table 21.4: Power for Multiple Regression - Effect of R2 and the number of
independent variables (k) on the sample size n for the overall F test of the
model (H0 : β1 = β2 = . . . = βk = 0). See text for further details.

R2

k 0.1 0.3 0.6
1 73 21 8
2 90 26 11
3 103 30 12
4 113 33 14
5 122 36 16
6 130 39 17
7 137 42 18
8 144 44 20
9 150 46 21
10 156 48 22
20 205 67 34
30 244 82 45
40 278 97 55
50 308 110 66
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21.12 Polynomial regression

In a linear regression, we sometimes saw a nonlinear relationship between Y
and X for some data sets (Chapter 17). This problem could often be fixed
by applying a transformation to Y or X , but this approach sometimes fails.
An alternative solution is to fit a flexible polynomial in X to the data. The
observations would be modeled using the equation

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + . . .+ εi. (21.54)

This is a polynomial regression model. It is similar in structure to multiple
regression, except the independent variables X1, X2, . . . , Xk are replaced with
increasing powers of X.

As we add more powers of X, the polynomial regression model becomes
increasingly flexible. A model using only X and X2 would fit a quadratic
polynomial (a parabola) to the data, while one with X, X2, and X3 would fit
a cubic one, which is S-shaped. While higher powers of X would allow even
more flexibility, they are seldom needed to obtain an adequate fit. Another
issue is extrapolation beyond the range of X values, where higher order poly-
nomials can generate unrealistic estimates (Kutner et al. 2005). For these
reasons, it is desirable to find the lowest order polynomial that adequately
describes the data.

One issue with using the powers of X in a regression is that they are
collinear with one another. For example, we would expect X, X2, and X3 to
be strongly correlated. A common strategy is to use centered polynomials
to reduce this collinearity. This is accomplished by centering the independent
variable around its mean before finding the power. In particular, we first
define x = X−X̄ and then raise x to the desired power, using these centered
variables in the polynomial regression.

21.13 Population growth experiment - SAS

demo

As an example of polynomial regression, we will analyze data from a hypo-
thetical experiment on a stored grain insect, where varying numbers of adult
insects (N) are added to a container with grain, and then the number of
offspring per adult estimated (R). We would expect that R would decrease
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as N was increased because of intraspecific competition among the insects.
The Ricker model is often used as a simple description of intraspecific com-
petition and could be suitable for these data (Ricker 1954). The model has
two parameters, the intrinsic growth rate r of the organism and its carry-
ing capacity K. For this model, we would expect the following relationship
between logR and N :

logR = r(1− (N/K)) = r − (r/K)N = α− βN, (21.55)

where α = r and β = r/K. This is essentially a linear regression model
for logR vs. N . What we would like to determine is whether this model is
adequate, or whether a more complex nonlinear one is needed. We can answer
this question using a polynomial regression model with different powers of
N . If the tests for these terms are significant, it suggests a more complex
model is needed for these observations.

The SAS program below lists the observations from this hypothetical ex-
periment in a data step. Also listed is the mean of value of N (nbar = 50.455).
This is used in the centering process, which first calculates a centered density
x and then the powers of x (x2, x3). The data are then plotted along with a
smooth line using proc gplot and the symbol1 i=sm70 option. The smooth line
is constructed using cubic splines, which are themselves a kind of polynomial.
This graph helps visualize the relationship between logR and n.

We then use proc glm to conduct the polynomial regression (SAS Insti-
tute Inc. 2018b). We use this procedure rather than proc reg because it
can generate Type I sums of squares and tests. These are produced by se-
quentially fitting the different terms in the model statement, and can be used
to determine the lowest order polynomial needed to describe the data. For
example, the Type I test for x3 tests whether this power is needed with x and
x2 already in the model.

The results from proc glm output suggested a quadratic polynomial pro-
vides an adequate description of these data (see discussion below). The re-
mainder of the program plots the observations with a quadratic polynomial
line plus a confidence interval (proc gplot with the symbol option i=rqclm).
It then uses proc reg to finish the analysis, using syntax similar to previous
multiple regression analyses.
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SAS Program

* Ricker_polynomial.sas;

title "Polynomial regression for Ricker data";

data ricker;

input n logR;

* For centered polynomials, you’ll need the mean X value;

nbar = 50.455;

x = n-nbar;

x2 = x**2;

x3 = x**3;

datalines;

5 0.42

10 0.33

20 0.48

30 0.03

40 -0.18

50 -0.16

60 0.08

70 -1.20

80 -1.45

90 -1.72

100 -2.67

;

run;

* Print data set;

proc print data=ricker;

run;

* Plot data and fit smooth line;

proc gplot data=ricker;

plot logR*n / vaxis=axis1 haxis=axis1;

symbol1 i=sm70 v=star c=black height=2 width=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Polynomial regression;

proc glm data=ricker;

* Look at Type I tests to determine order of polynomial;

model logR = x x2 x3;

run;

* Preceding analysis suggests second-order polynomial adequate;

* Plot the data and second-order polynomial;

proc gplot data=ricker;

plot logR*n / vaxis=axis1 haxis=axis1;

symbol1 i=rqclm v=star c=black height=2 width=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;
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run;

* Polynomial regression with second-order polynomial;

proc reg data=ricker;

model logR = x x2 / clb stb tol vif partial;

run;

quit;

Examining the first proc gplot graph, we observe logR decreased with
density n, suggesting that reproduction was affected by intraspecific compe-
tition. The relationship appears curved, however, and so the Ricker model
may not be adequate (Fig. 21.15). The Type I tests from proc glm yielded
highly significant results for x (F1,7 = 109.81, P < 0.0001) and x2 (F1,7 =
12.45, P = 0.0096), but a nonsignificant one for x3 (F1,7 = 0.43, P = 0.5328)
(Fig. 21.16). This pattern suggests a quadratic polynomial would be suffi-
cient to describe these data. In addition, the highly significant test for x2

means we can definitively reject the linear Ricker model.
The second proc gplot graph shows that a quadratic provides a reasonable

approximation to the observations (Fig. 21.17). Examining the proc reg

output (Fig. 21.18), we see that overall F test was highly significant (F3,8 =
40.89, P < 0.0001), as were the individual tests for x (t8 = −10.59, P <
0.0001) and x2 (t8 = −3.66, P = 0.0064). The polynomial regression model
explained about 94% of the variation in the data (R2 = 0.943). Due to
centering, the variance inflation factors show no collinearity issues with x

and x2.
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Figure 21.14: Ricker polynomial.sas - proc print

Figure 21.15: Ricker polynomial.sas - proc gplot (1)
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Figure 21.16: Ricker polynomial.sas - proc glm

Figure 21.17: Ricker polynomial.sas - proc gplot (2)
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Figure 21.18: Ricker polynomial.sas - proc reg
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21.14 Model selection using information cri-

teria

There is a substantial literature on problems with hypothesis testing and
P values in scientific research, as well as defenses of this approach. Recent
papers that summarize these issues include Aho et al. (2014), Burnham and
Anderson (2014), Murtaugh (2014), and de Valpine (2014), in an ecological
context. The most common alternative to hypothesis testing is model selec-
tion using Akaike’s Information Criterion, or AIC (Akaike 1974; Anderson
et al. 2000; Burnham and Anderson 2002; Burnham and Anderson 2014).
The basic idea is to formulate a collection of models to describe the data, and
then choose the best one based on AIC values, defined as the model with
the smallest AIC. For example, in a multiple regression setting we might be
interested in determining the best model among different subsets of the inde-
pendent variables. There is no explicit hypothesis testing in this approach,
but confidence intervals can be calculated to describe the magnitude of an
effect.

While the hypothesis testing and AIC approaches seem different, they
often use similar statistical models with the same sets of assumptions. There
is also a common scenario, nested models, where the two approaches would
produce similar results. Models are nested when a simpler model is a special
case of a more complex one, with fewer parameters or variables. Procedures
like ANOVA and multiple regression utilize nested models, with the tests
constructed using a simpler H0 model nested within a more complex H1

model. Murtaugh (2014) showed there is a direct relationship between P
values and changes in AIC under these conditions. Suppose that a test
comparing H0 and H1 was highly significant, favoring the H1 model. The
AIC value for the H1 model would also be substantially smaller than H0, and
so this approach would also select the H1 model. However, it is important
to note there are scenarios where the models are not nested, which precludes
hypothesis testing and P values but where AIC is useful. For example,
Burnham & Anderson (2002) used AIC to compare nine different nonlinear
models of the relationship between the number of bird species and sample
size, with the models of such different forms they could not be nested.

So what is AIC? The AIC uses the concept of Kullback-Leibler in-
formation. We suppose that the data have some probability distribution
f , and we would like to approximate it with another distribution g. These
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two distributions can be thought of as different models for the data, with
f the true one. Kullback-Leibler information is a measure of the distance
between f and g, denoted as I(f, g). In mathematical terms, it is defined as
the expected value of ln(f/g), where the expected value is calculated using
the f distribution:

I(f, g) = Ef

[
ln

(
f(x)

g(x|θ)

)]
. (21.56)

(Akaike 1974; Anderson et al. 2000; Burnham and Anderson 2002). The
notation g(x|θ) is used to emphasize that g has a number of parameters (say
θ1, θ2, etc.) that could affect I(f, g). I(f, g) is always positive unless f = g,
for which I(f, g) = 0. Because the true distribution f and the parameters of
g are typically unknown, I(f, g) is not useful in this form because it cannot
be calculated.

To see how I(f, g) behaves, suppose that f and g are simple continuous
distributions like the normal. Equation 21.56 can then be expressed as an
integral of the form

I(f, g) =

∫
f(x) ln

(
f(x)

g(x|θ)

)
dx. (21.57)

If f and g are quite distinct from each other I(f, g) will be large, because
positive values of ln(f/g) will mostly coincide with f , and so receive more
weight in the integral (Fig. 21.19). This effect is diminished when f and g
are closely overlapping. One can think of I(f, g) as measuring the mismatch
between the two distributions, or more formally as the loss of information
when approximating the true distribution f using g(x|θ).

We can break the expected value in Equation 21.56 into two pieces, using
the fact that ln(a/b) = ln a − ln b and formulas for the expected value of a
sum (see Chapter 7). We have

I(f, g) = Ef [ln f(x)]− Ef [ln g(x|θ)]. (21.58)

The first term in this equation does not involve g, and in any event would
be a constant because f is fixed. This suggests that to minimize I(f, g), we
should compare the relative values of the second term. It can be shown that
smaller values of −Ef [ln g(x|θ)] would make I(f, g) smaller, minimizing the
loss of information (Burnham and Anderson 2002).

The contribution of Akaike (1974) was to find an estimator of−Ef [ln g(x|θ)]
using maximum likelihood, which also provides estimates of the parameters
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of g. Suppose we have a data set that could be used to estimate θ using
maximum likelihood (see Chapter 8). He showed that −Ef [ln g(x|θ)] could
be estimated using

AIC = −2 lnL(θ̂) + 2K, (21.59)

where L(θ̂) is the likelihood function for g at the maximum likelihood esti-
mate of θ, by definition the largest value of L (Akaike 1974; Anderson et al.
2000; Burnham and Anderson 2002). Here K is the number of parameters in
θ. An interesting feature of the AIC is that K is actually a bias correction
for this estimate.

Now suppose we have a number of different g distributions that are models
for our data, with different numbers of parameters. Models with the smallest
value of AIC would also have the smallest I(f, g), and so the smallest loss of
information in approximating f by g. We can gain further insight into this
process by examining the two terms in the AIC formula. Models with more
parameters could potentially fit the data better, generating a larger L and
so smaller −2 lnL, but they would also have larger values of 2K. Thus, the
AIC imposes a tradeoff between the fit of the model and its complexity.

In multiple regression, ANOVA, and other general linear models, −2 lnL
and so AIC are a function of SSerror and the number of parameters in the
model. In particular, for models of this type we have

AIC = n ln(SSerror/n) + 2K (21.60)

where n is sample size. We can see from this expression that better models
will tend to have smaller values of SSerror and also fewer parameters, for a
given sample size. Note that different software packages may count K and
calculate AIC in different ways, so that the values of reported are different.
These differences, while confusing, have no effect on the relative ranking of
models by AIC.

A quantity related to AIC is the Bayesian Information Criterion or BIC
(Schwarz 1978). The BIC was derived using the Bayesian interpretation of
probability as a belief, but is valid outside this framework. BIC is calculated
using the formula

BIC = −2 lnL(θ̂) + ln(n)K (21.61)

where as before n is sample size and K the number of parameters. The only
difference between the formulas for AIC and BIC is the multiplier for K –
it is a constant (2) for AIC but ln(n) for BIC. In terms of regression and
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ANOVA models, BIC can be calculated using the formula

BIC = n ln(SSerror/n) + ln(n)K (21.62)

The BIC is used in the same fashion as AIC, with smaller values indicating
a better model. It is clear from this formula that BIC penalizes complex
models more heavily as sample size increases, because of the ln(n) multiplier.

Which criterion, AIC vs. BIC, performs best in model selection? Brewer
et al. (2016) compared the two methods using simulated data intended to
mimic the hidden heterogeneity likely present in real data sets, where the
data could be mixture of observations with different parameter values. Per-
formance was measured by how well the selected models predicted the obser-
vations of similar data sets, separate from the ones used in model selection.
This tests how well the predictions of the model generalize to new observa-
tions. When heterogeneity was low AIC generally performed best, but BIC
was better when heterogenity was large, so there was no clear winner.

We will use a more complex data set to illustrate model selection using
AIC. Kaul and Wilsey (2020) wanted to determine which factors affect the
success of tallgrass prairie restorations located in Iowa, USA. These prairies
were restored using seed mixes, and as one measure of success they compared
the species diversity of the seed mix with the diversity at the restored site,
using the Bray-Curtis dissimilarity index as the dependent variable. This
index ranges from 0 (all species shared) to 1 (none in common), so larger
values suggest the restoration has failed. The independent variables were
the age of the site and its linearity (shape), soil pH and organic matter,
temperature and precipitation at establishment as well as annual averages,
and exotic species abundance. A subset of these observations is shown in
Table 21.5 (see https://datadryad.org for the full data set).
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Figure 21.19: Graphical illustration of I(f, g) under two scenarios.
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Table 21.5: Example 3 - Site variables for restored prairies and Bray-Curtis dissimilarity (Kaul and Wilsey
2020). Here TE = temperature at establishment, PE = precipitation at establishment, TA = average annual
temperature, and PA = average annual precipitation. See text for further details.

Site Age Linearity pH Organic TE PE TA PA Exotic Bray-Curtis i
3 5 1.29 7.33 12.28 12.25 31.77 9.94 35.61 24.05 0.982 1
4 6 1.39 7.93 8.54 8.69 45.50 8.89 36.80 19.87 0.898 2
5 14 1.21 7.90 7.11 9.31 31.83 9.11 35.52 3.68 0.791 3
7 5 1.24 8.03 6.28 9.42 28.26 8.00 36.48 10.25 1.000 4
8 3 1.28 7.67 5.69 6.61 43.13 8.00 36.48 18.00 0.998 5

etc.

100 17 1.30 7.87 10.42 9.17 33.58 10.72 37.59 25.03 0.970 40
101 3 1.26 7.93 8.64 8.56 40.66 10.72 37.59 15.37 0.772 41
102 11 1.25 8.10 3.61 11.69 40.36 10.00 36.28 9.57 0.972 42
105 13 1.05 7.93 14.54 8.53 35.57 8.00 36.48 13.77 0.718 43
106 10 1.02 6.97 8.19 7.64 47.79 8.00 36.48 14.25 0.624 44
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21.15 Model selection for Example 3 - SAS

demo

We will use AIC to select the best model for the Example 3 data, with
multiple regression the underlying model (see program below). We first input
the observations using a data step, selecting the Bray-Curtis index (bc) as
the dependent variable y. We then plot y vs. all the independent variables
(age, linear, . . ., exotic) using proc gplot.

The next section of the program conducts a standard multiple regres-
sion using proc reg. We will later compare the results of this analysis with
that generated by proc glmselect, a SAS procedure that implements various
types of model selection (SAS Institute Inc. 2018b). The model statement
for proc glmselect is similar to proc reg, but with a class statement it can
also accomodate ANOVA-like factors. Model selection using AIC is imple-
mented using the selection=stepwise(select=AICC) option. Stepwise refers to
the search method, with the procedure adding or dropping individual vari-
ables until it finds the best model. The option AICC requests a version of
AIC corrected for small sample sizes. Model selection using BIC could
be requested using the select=SBC option (Schwarz’s Bayesian Criterion or
BIC).

Examining a subset of proc gplot graphs, we see that the Bray-Curtis dis-
similarity index (y) increased with the linearity of the site (linear) and exotic
species abundance (exotic), and decreased with precipitation during estab-
lishment (PE) (Fig. 21.21-21.23). From the proc reg output (Fig. 21.24), we
see that the overall model was highly significant (F9,34 = 11.11, P < 0.0001)
as were the individual tests for linearity (t34 = 3.43, P = 0.0016), exotic
abundance (t34 = 4.19, P = 0.0002), and precipitation during establishment
(t34 = −3.07, P = 0.0042). These variables also had the largest standardized
regression coefficients. No other variables approached significance.

Model selection using AIC and proc glmselect chose linearity, exotic
abundance, and precipitation during establishment for the best model (Fig.
21.25). These were the same variables that were significant in the multi-
ple regression. Kaul and Wilsey (2020) found these same three variables
in their model search using stepwise regression, a method of model selection
where variables are added or removed based on repeated tests at some α level
(α = 0.15 in this case). The different model selection methods all yielded
the same result, suggesting it is a robust one. These authors conclude that
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high exotic species abundance interfered with the restoration process, so that
the restored site shared fewer species with the seed mix used to restore it.
Linearity also affected restoration, likely because highly linear sites had more
edges for exotic species to invade. Presumably precipitation during estab-
lishment aided the initial success of the seed mix, and so had the opposite
effect.

Note that proc glmselect does not provide P values for the t tests of the
independent variables, because they would not be valid in this context. The
Type I error rates for these tests assume a single multiple regression analysis,
not a selection process where many different models were considered.

SAS Program

* Restored6.sas;

title "Model selection for restored prairie data";

data RPdat;

input site_id $ age linear ph organic TE PE TA PA exotic bc;

* Bray-Curtis (bc) measures dissimilarity of the site vs.

restoration seed mix;

* 0 = all species in common, 1 = none in common;

* Kaul and Wilsey (2020) say similarity in paper;

* Apply transformations here;

y = bc;

datalines;

3 5 1.29 7.33 12.28 12.25 31.77 9.94 35.61 24.05 0.982

4 6 1.39 7.93 8.54 8.69 45.50 8.89 36.80 19.87 0.898

5 14 1.21 7.90 7.11 9.31 31.83 9.11 35.52 3.68 0.791

7 5 1.24 8.03 6.28 9.42 28.26 8.00 36.48 10.25 1.000

8 3 1.28 7.67 5.69 6.61 43.13 8.00 36.48 18.00 0.998

etc.

100 17 1.30 7.87 10.42 9.17 33.58 10.72 37.59 25.03 0.970

101 3 1.26 7.93 8.64 8.56 40.66 10.72 37.59 15.37 0.772

102 11 1.25 8.10 3.61 11.69 40.36 10.00 36.28 9.57 0.972

105 13 1.05 7.93 14.54 8.53 35.57 8.00 36.48 13.77 0.718

106 10 1.02 6.97 8.19 7.64 47.79 8.00 36.48 14.25 0.624

;

run;

* Print data set;

proc print data=RPdat;

run;

* Plot y vs. x variables;

proc gplot data=RPdat;
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plot y*(age linear ph organic TE PE TA PA exotic) / vaxis=axis1

haxis=axis1;

symbol1 i=rl v=star c=black height=2 width=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

symbol1 i=rl v=star c=black;

run;

* Multiple regression;

proc reg data=RPdat;

* Specify variables in regression model;

model y = age linear ph organic TE PE TA PA exotic / clb stb tol vif partial;

run;

* Model selection using AICc (stepwise);

proc glmselect data=RPdat;

* Specify variables in regression model and method of selection;

model y = age linear ph organic TE PE TA PA exotic /

selection=stepwise(select=AICC);

run;

quit;
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etc.

Figure 21.20: Restored6.sas - proc print
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Figure 21.21: Restored6.sas - proc gplot

Figure 21.22: Restored6.sas - proc gplot
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Figure 21.23: Restored6.sas - proc gplot
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Figure 21.24: Restored6.sas - proc reg
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Figure 21.25: Restored6.sas - proc glmselect
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21.17 Problems

1. This problem involves the matrix calculations for linear regression, a
special case of multiple regression. Suppose you have a data set with
four observations:

Yi Xi

4 1
6 2
9 3
10 4

(a) What is the design matrix X and the vector Y for this data set?

(b) What is the transpose of X, or X ′? The answer should be a 2×4
matrix.

(c) Calculate X ′X using matrix multiplication. The answer should
be a 2× 2 matrix.

(d) Show that the matrix below is the inverse of X ′X, by multiplying
them together to obtain I (the identity matrix).

(X ′X)−1 =

(
1.5 −0.5
−0.5 0.2

)
(21.63)

(e) Calculate (X ′X)−1X ′ using matrix multiplication. The answer
should be a 2× 4 matrix.

(f) Finally, calculate β = (X ′X)−1X ′Y using matrix multiplica-
tion. The answer should be a 2 × 1 matrix, with elements equal
to the regression intercept and slope. You can check your answer
by running a linear regression (see Chapter 17).
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2. Ecologists who study predator-prey interactions are often interested in
the mortality inflicted by the predator as a function of prey abundance.
Data were collected on the proportion of prey eaten by a single preda-
tor as the number of prey were increased, in a laboratory experiment
(see table below). The proportion eaten was an average over multiple
replicates.

(a) Fit a flexible model to these observations using polynomial re-
gression and SAS. What order polynomial was needed to describe
these observations? Attach your program and output.

(b) Use the polynomial model to predict the proportion eaten for 35
and 45 prey, including confidence intervals for the predictions.

(c) The proportion eaten vs. prey curve can take different shapes
depending on the functional response of the predator. For ex-
ample, the curve would be flat for a Type I response, strictly
decreasing for a Type II response, and hump-shaped for a Type
III response (Gotelli 2008). How would you classify the response
in this experiment?

Number of Prey Proportion Eaten
1 0.00
2 0.05
3 0.10
4 0.13
5 0.14
7 0.21

10 0.24
15 0.31
20 0.39
25 0.39
30 0.42
40 0.40
50 0.30
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3. Data were collected on the abundance of an insect species (Y ) as a
function of five environmental variables (X1, X2, X3, X4, and X5). See
table below.

(a) Conduct a multiple regression analysis of these data using SAS,
with Y the dependent variable and X1, X2, X3, X4, and X5 the
regressors. Discuss the significance of the overall test of the model
and the tests for each independent variable. Attach your program
and output.

(b) Use standardized regression coefficients to compare the size and
direction of the different effects, especially the significant ones.
Which independent variables have the most effect on insect abun-
dance? Which ones increase or decrease it?

(c) Select the best model for these data using AIC, and write the
answer below. Attach your SAS program and output.
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X1 X2 X3 X4 X5 Y
13.4 10.4 12.7 126 15.4 18.6
11.4 11.9 8.7 115 12.8 21.2
9.2 13.3 10.3 143 11.2 24.1

15.5 11.0 12.6 88 14.9 18.9
13.1 9.9 10.3 156 11.9 26.4
16.3 13.2 9.2 146 14.0 19.8
10.1 15.5 8.9 135 11.3 21.8
7.6 10.0 16.7 128 7.0 26.7

12.9 11.7 16.4 89 13.2 18.6
11.0 11.3 14.8 171 12.3 20.8
11.1 13.3 6.4 128 14.1 21.6
14.3 10.1 9.3 92 15.1 18.4
10.1 13.7 11.3 129 13.0 18.5
12.2 8.9 11.9 143 12.9 24.8
10.9 10.3 12.8 154 12.3 27.9
12.6 13.4 13.7 177 16.1 22.6
12.6 12.4 11.1 165 16.4 26.5
12.4 10.2 7.1 118 13.9 23.9
15.2 13.4 8.1 111 14.2 19.5
13.7 14.0 11.3 123 12.3 16.3
14.1 16.5 7.0 58 7.8 7.1
20.5 8.5 8.1 143 11.9 27.3
5.9 12.0 8.8 149 8.2 27.2

12.7 13.8 19.3 122 12.7 19.7
15.2 9.5 11.9 126 9.2 24.0
17.5 14.0 16.0 130 15.0 19.1
7.7 10.0 10.0 81 9.9 16.0

16.7 13.8 9.3 132 11.2 18.4
14.9 16.9 11.1 124 11.4 17.2
10.6 15.3 13.1 145 15.4 19.4


