
Chapter 6

Continuous Random Variables

We previously examined several different probability distributions for dis-
crete random variables, in particular the binomial, Poisson, and negative
binomial distributions. These distributions are suitable for modeling obser-
vations that are counts of some type, such as the number of plants in a
quadrat or the number of females vs. males in a sample. Many variables
in biology are continuous, however, such as the length and weight of organ-
isms, quantities associated with populations such as birth, mortality, and
growth rates, and chemical concentrations. We will now examine continuous
random variables and their associated distributions that are used to model
these quantities, in particular the uniform and normal distributions.
The uniform distribution is often used to generate random sampling points
in one- and two-dimensional areas. For example, we could use the uniform
distribution to select a random point along a transect to sample, or a random
x, y coordinate within a field to place a sampling quadrat. It also a useful
starting point for understanding continuous distributions because of its sim-
plicity. We then turn to the normal distribution, which forms the basis of
many statistical procedures. Many biological variables have a distribution
close to normal, or if initially non-normal can often be transformed to more
closely resemble the normal distribution.

Discrete random variables have a function f(y) that directly provides the
probabilities for events that are integers, such as Y = 0, Y = 3, and so forth
(see Chapter 5). However, events for continuous random variables are in the
form of intervals. For example, we will be interested in finding the probabil-
ity for events like 1 < Y < 3 or Y > 5. Continuous random variables use a
different kind of function, called a probability density function, to find
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the probabilities for events. For an event like 1 < Y < 3, probabilities are
found by integrating the probability density function (finding the area under
the function) over this interval. This process will be explained in more detail
below. For many continuous random variables, such as the normal distribu-
tion, there exist tables of these integrals and probabilities for certain useful
intervals. Note that events like Y = 3 have zero probability for continuous
random variables, because this implies an interval of zero width and so the
integral is zero. This makes some intuitive sense, because it is unlikely that a
continuous quantity Y would take a value exactly equal to 3 to many decimal
places.

6.1 Uniform distribution

Suppose that we have two constants, a and b, with a < b. A random vari-
able Y has a uniform distribution if an observation is equally likely to occur
anywhere between a and b, but never occurs outside this interval. The prob-
ability density for the uniform distribution is defined by the equation

f(y) =
1

b− a
(6.1)

for a ≤ y ≤ b (Mood et al. 1974). Outside of this interval, we have f(y) = 0.
The quantities a and b are the parameters of the uniform distribution. The
uniform distribution for a = 0, b = 1 is shown below (Fig. 6.1). The uniform
distribution gets its name from the fact that its density is uniform over the
interval a to b.

Note that the density simply describes a square with a length and width
of one, implying an area equal to one. This is an important property of
probability density functions in general – the area under f(y) is always equal
to one. Also shown is the uniform density for a = 0 and b = 2 (Fig. 6.2). It
is lower but wider than the previous example, and also has an area of one.
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Figure 6.1: Uniform probability density for a = 0, b = 1

Figure 6.2: Uniform probability density for a = 0, b = 2
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Probabilities for the uniform distribution are calculated by finding the
area under the probability density function, using integration (see Chapter
2). This is relatively easy to do because of the simple form of the probability
density. Suppose Y is a uniform random variable, and a = 0 and b = 1.
What is the probability that an observed Y lies within the interval 0.5 to
0.75? We have

P [0.5 < Y < 0.75] =

∫ 0.75

0.5

1

b− a
dy (6.2)

=

∫ 0.75

0.5

1

1− 0
dy = y|0.75

0.5 (6.3)

= 0.75− 0.5 = 0.25. (6.4)

We could also have found this probability without any calculus. It is just
the area under f(y) between 0.5 and 0.75, calculated as length × height
= (0.75− 0.5)× 1 = 0.25.

Here are two more examples. Suppose that for a = 0 and b = 2, we
want to find the probability that 0.2 < Y < 0.4. The height of the density
function in this case is 1/(b − a) = 1/(2 − 0) = 0.5. We therefore have
P [0.2 < Y < 0.4] = (0.4 − 0.2) × 0.5 = 0.1. Now suppose we want the
probability that 0 < Y < 2. We have P [0 < Y < 2] = (2−0)×0.5 = 1. This
also follows from the fact that f(y) is a probability density function which
has an area of one, and the interval 0 < Y < 2 encompasses the entire range
of f(y).

The cumulative distribution function for a continuous random vari-
able is defined as the quantity

F (y) = P [Y < y] =

∫ y

−∞
f(z)dz. (6.5)

This function is just the probability to the left of y. The function F (y)
increases from 0 to 1 as y increases. If we carry out this integral for the
uniform distribution, we get the function

F (y) =
y − a
b− a

(6.6)

for a ≤ y ≤ b. In addition, F (y) = 0 for y < a, and F (y) = 1 for y >
b. Figure 6.3 shows the cumulative distribution function for the uniform
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distribution corresponding to Fig. 6.2. Note that it increases linearly between
a and b, as the probability to the left of y accumulates. The cumulative
distribution function has many uses in statistics, especially for continuous
random variables.

Figure 6.3: Cumulative distribution function for the uniform distribution,
with a = 0, b = 2

The uniform distribution has a number of common applications. It is
possible to generate a stream of random numbers that have a uniform distri-
bution using software, and from these values produce random observations
for other distributions, including discrete distributions as well as the normal
distribution. The uniform distribution can also be used to generate random
sampling points along a transect for ecological studies, or random x, y co-
ordinates for placing quadrats within an area (see below). It can also be
used to randomly sample from a population, or to randomize the order of
treatments in an experiment.

6.1.1 Random sampling coordinates - SAS demo

A common application of the uniform distribution is to generate random
sampling coordinates. SAS can produce random observations with a uniform
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distribution using the function ranuni. For this function, the parameter values
of the uniform distribution are set at a = 0 and b = 1.

However, we will often want observations for other parameter values, es-
pecially other values of b. It can be shown that if Y has a uniform distribution
with a = 0 and b = 1, then the variable Y ′ = cY has a uniform distribution
with a = 0 and b = c, where c is any positive number. This fact enables us
to generate uniform random variables with any value of b.

For example, suppose we want to produce random sampling coordinates
along a 100 m transect using the uniform distribution. If Y has a uniform
distribution with a = 0 and b = 1, then Y ′ = 100Y has a uniform distribution
with a = 0 and b = 100. Values of Y generated in this fashion will give us
sampling coordinates uniformly distributed between 0 and 100 m.

We will illustrate this process using a SAS program to generate random
sampling coordinates for a 100 m transect and also a 200 × 100 m rectangular
area. A call to gplot is used to plot the random coordinates. See SAS program
and output below.

SAS Program

* randcoords.sas;

title "Generate random sampling coordinates";

* Generate n random coordinates along a c m transect;

data transect;

* Sample size n;

n = 20;

* Multiplying by c gives a uniform random variable with a=0, b=c;

c = 100;

do i = 1 to n;

x = c*ranuni(0);

output;

end;

drop i;

run;

* Print coordinates;

proc print data=transect;

run;

* Generate n random coordinates within a 200 x 100 m area;

data coords;

* Sample size n;

n = 200;

* Multiplying by c_x gives a uniform random variable with a=0, b=c_x;

c_x = 200;

* Multiplying by c_y gives a uniform random variable with a=0, b=c_y;
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c_y = 100;

do i = 1 to n;

x = c_x*ranuni(0);

y = c_y*ranuni(0);

output;

end;

drop i;

run;

* Print first 25 coordinates;

proc print data=coords(obs=25);

run;

* Show coordinates as a scatterplot;

proc gplot data=coords;

plot y*x / vaxis=axis1 haxis=axis2;

symbol1 v=dot c=red;

axis1 order=(0 to 100 by 10) label=(height=2) value=(height=2)

width=3 major=(width=2) minor=none;

axis2 order=(0 to 200 by 20) label=(height=2) value=(height=2)

width=3 major=(width=2) minor=none;

run;

quit;
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Figure 6.4: randcoords.sas - proc print
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etc.

Figure 6.5: randcoords.sas - proc print
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Figure 6.6: randcoords.sas - proc gplot
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6.2 Normal distribution

The normal distribution plays an important role in statistics, with good rea-
son. Biological variables often have a distribution that can be approximated
by the normal or can be transformed to be normal. The normal distribution
is thus a valid choice for modeling many variables encountered in practice.
Many statistical quantities will also have a distribution approaching the nor-
mal for large sample sizes. For example, the distribution of the sample mean
Ȳ will approach the normal distribution as the sample size n increases, thanks
to the central limit theorem (see Chapter 7). So, even if the underlying data
are non-normal, statistics like Ȳ will be normally-distributed for sufficiently
large n.

The probability density for the normal distribution is defined by the func-
tion

f(y) =
1√

2πσ2
e−

(y−µ)2

2σ2 (6.7)

for∞ < µ <∞ and σ2 > 0 (Mood et al. 1974). The normal distribution has
two parameters, µ and σ2. The parameter µ is the mean of the distribution
and basically controls its location, while σ2 is its variance and determines its
dispersion or spread. A random variable Y with a normal distribution is often
written as Y ∼ N(µ, σ2), where the symbol ‘∼’ stands for ‘is distributed as’
while ‘N ’ signifies the normal. A random variable with a standard normal
distribution assumes that µ = 0 and σ2 = 1, or Y ∼ N(0, 1). The symbol
Z is often used to denote a standard normal random variable.

Figure 6.7 shows the bell-shaped normal distribution for three different
sets of µ and σ2 values, and illustrates how these parameters affect its location
and shape. As µ is increased the distribution shifts to the right, while an
increase in σ2 causes the distribution to spread out.
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Figure 6.7: normal plot3.sas - proc gplot
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6.2.1 Normal distribution - SAS demo

The SAS program used to generate Fig. 6.7 is listed below. Three different
sets of µ and σ2 values are given in the data step of the program (feel free
to experiment with other values). The different curves are specified in the
plot statement for proc gplot. The overlay option is used to generate a single
graph with all three curves, each with different colors specified by the symbol

statements.

SAS Program

* normal_plot3.sas;

options pageno=1 linesize=80;

goptions reset=all;

title "Normal probability densities";

title2 "Three sets of parameters";

data normal_plot;

* Three sets of normal parameters here;

mu_1 = 0; sig2_1 = 1;

mu_2 = 2; sig2_2 = 2;

mu_3 = 2; sig2_3 = 0.5;

* Minimum and maximum values of y;

ymin = -4;

ymax = 6;

* Divisions between ymin and ymax (more = smoother graph);

ydiv = 100;

* Calculate step length;

ylength = (ymax-ymin)/ydiv;

* Find y and f(y) values for the plot;

do i=0 to ydiv;

y = ymin + i*ylength;

* normal probability density function;

fy_1 = (1/sqrt(2*3.14159*sig2_1))*exp(-((y-mu_1)**2)/(2*sig2_1));

fy_2 = (1/sqrt(2*3.14159*sig2_2))*exp(-((y-mu_2)**2)/(2*sig2_2));

fy_3 = (1/sqrt(2*3.14159*sig2_3))*exp(-((y-mu_3)**2)/(2*sig2_3));

* Output y and fy1, fy2, fy3 to SAS data file;

output;

end;

run;

* Print data;

proc print data=normal_plot;

run;

* Plot probability density function;

proc gplot data=normal_plot;

plot fy_1*y=1 fy_2*y=2 fy_3*y=3 / vref=0 wvref=3 vaxis=axis1 haxis=axis1 overlay;
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symbol1 i=join v=none c=black width=3;

symbol2 i=join v=none c=blue width=3;

symbol3 i=join v=none c=red width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;

The cumulative distribution function for the normal distribution is de-
fined as the quantity

F (y) = P [Y < y] =

∫ y

−∞
f(z)dz =

∫ y

−∞

1√
2πσ2

e−
(z−µ)2

2σ2 dz. (6.8)

The values of this integral have to be numerically calculated. Fig. 6.8
shows the cumulative distribution functions for the three normal distribu-
tions shown in Fig. 6.7. Note that the mean and variance for the different
normal distributions affect the overall location and shape of F (y).

Figure 6.8: Cumulative distribution function for three normal distributions

Like other continuous random variables, events for the normal distribu-
tion are in the form of intervals. We can calculate the probabilities for events
by finding the area under the normal density function corresponding to the
interval. This process is more difficult than for the uniform distribution be-
cause f(y) has a more complex shape. However, there exist tables of the area
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under f(y) for certain intervals that can be used for this purpose, as well as
the SAS function probnorm. Table Z gives the probabilities for intervals of
the form Z < z, where Z has a standard normal distribution and z ≥ 0 (see
Chapter 23). The first two digits of z are specified in the left-most column
of Table Z, while the third digit is the top row. The values within the table
correspond to the probability that Z < z, or P [Z < z], i.e., the cumulative
distribution function for the standard normal.

6.2.2 Sample calculations - standard normal distribu-
tion

We illustrate how Table Z is used to calculate the probabilities for various
events listed below. The general strategy is to sketch the interval on the
standard normal bell curve, and deduce from this picture how to obtain the
probability using Table Z.

1. Find the probability that Z < 0.55, or P [Z < 0.55]. From Table Z, we
see that P [Z < 0.55] = 0.7088. See Fig. 6.9 for an illustration of this
probability.

2. Find the probability that 0.40 < Z < 1.96. In this case, the interval
is not the same as shown in Table Z, and additional calculations are
required. We first find the probabilities for the intervals Z < 1.96 and
Z < 0.4 using Table Z. The probability for 0.40 < Z < 1.96 should then
be the difference between these two probabilities (see Fig. 6.10). We
have P [Z < 1.96] = 0.9750 and P [Z < 0.40] = 0.6554 from Table Z, so
P [0.40 < Z < 1.96] = P [Z < 1.96]− P [Z < 0.40] = 0.9750− 0.6554 =
0.3196.

3. Find the probability that Z > 0.55. We will use the complement rule
to obtain this probability (see Chapter 4). For any event A, we have
P [Ac] = 1− P [A]. If A is the event Z < 0.55, then AC corresponds to
Z > 0.55. Therefore, P [Z > 0.55] = 1 − P [Z < 0.55] = 1 − 0.7088 =
0.2912. See also Fig. 6.11.

4. Find the probability that Z < −1.23. This problem makes use of
the symmetry of the standard normal distribution around zero, as well
as the complement rule. By symmetry, we have P [Z < −1.23] =
P [Z > 1.23]. The complement of Z < 1.23 is Z > 1.23, and so
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P [Z > 1.23] = 1 − P [Z < 1.23] = 1 − 0.8907 = 0.1093. See Fig.
6.12.

5. Find the probability that −0.44 < Z < 2.15. This problem can also
be handled using symmetry and the complement rule. We first have
P [Z < 2.15] = 0.9842 using Table Z (Fig. 6.13). We then have P [Z <
−0.44] = P [Z > 0.44] = 1 − P [Z < 0.44] = 1 − 0.6700 = 0.3300 by
symmetry (Fig. 6.14). Therefore, P [−0.44 < Z < 2.15] = P [Z <
2.15]− P [Z < −0.44] = 0.9842− 0.3300 = 0.6542.

6. Find a number z0 such that P [Z < z0] = 0.95. This problem is the
inverse of the previous ones. Here, we want to find a value z0 that
gives a certain probability, rather than z0 being a given quantity and
determining the probability. To find z0, we scan Table Z until we find
a value that gives a probability close 0.95. We see that z0 = 1.64 or
1.65 give approximately the right probability.
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Figure 6.9: Sample calculation 1

Figure 6.10: Sample calculation 2
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Figure 6.11: Sample calculation 3

Figure 6.12: Sample calculation 4
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Figure 6.13: Sample calculation 5 - part 1

Figure 6.14: Sample calculation 5 - part 2
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6.2.3 Sample calculations - other normal distributions

We now examine how probabilities can be calculated for normal distributions
that are not standard normal. If Y ∼ N(µ, σ2), it can be shown that the
quantity

Z =
Y − µ
σ
∼ N(0, 1) (6.9)

Thus, a random variable Y with a normal distribution having any µ or σ2

can be transformed to a standard normal Z. The transformation works by
first centering the random variable Y around zero by subtracting µ, and then
dividing by σ so that it has a standard deviation and variance of one. Once
Y is transformed to a standard normal Z, we can find probabilities for any
event involving Y using Table Z. This process is illustrated below in several
sample calculations.

1. Suppose that Y ∼ N(50, 16). Find the probability that Y < 55. First,
we find σ =

√
σ2 =

√
16 = 4. Using the above equation, we then have

P [Y < 55] = P [Y − µ < 55− µ] (6.10)

= P

[
Y − µ
σ

<
55− µ
σ

]
(6.11)

= P

[
Z <

55− 50

4

]
(6.12)

= P [Z < 1.25]. (6.13)

We then use Table Z to find that P [Z < 1.25] = 0.8944, and so P [Y <
55] = 0.8944.

2. Find the probability that 52 < Y < 56, assuming Y ∼ N(50, 16). To
find this probability, we first convert the problem to one involving Z.
We have

P [52 < Y < 56] = P [52− µ < Y − µ < 56− µ] (6.14)

= P

[
52− µ
σ

<
Y − µ
σ

<
56− µ
σ

]
(6.15)

= P

[
52− 50

4
< Z <

56− 50

4

]
(6.16)

= P [0.50 < Z < 1.50]. (6.17)
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We next find the probabilities for the intervals Z < 1.50 and Z < 0.50
using Table Z, and then substract them to obtain P [0.50 < Z < 1.50].
We have P [Z < 1.50] = 0.9332 and P [Z < 0.50] = 0.6915, so P [0.50 <
Z < 1.50] = 0.9332−0.6915 = 0.2417. Thus, P [52 < Y < 56] = 0.2417.

3. Find the probability that Y > 54. We have

P [Y > 54] = P [Y − µ > 54− µ] (6.18)

= P

[
Y − µ
σ

>
54− µ
σ

]
(6.19)

= P

[
Z >

54− 50

4

]
(6.20)

= P [Z > 1.00]. (6.21)

We next use the complement rule to obtain this probability. We have
P [Z > 1.00] = 1−P [Z < 1.00] = 1− 0.8413 = 0.1587, so P [Y > 54] =
0.1587.

4. Find the probability that Y < 46.5. We have

P [Y < 46.5] = P [Y − µ < 46.5− µ] (6.22)

= P

[
Y − µ
σ

<
46.5− µ

σ

]
(6.23)

= P

[
Z <

46.5− 50

4

]
(6.24)

= P [Z < −0.88]. (6.25)

By symmetry, we have P [Z < −0.88] = P [Z > 0.88]. The complement
of Z < 0.88 is Z > 0.88, and so P [Z > 0.88] = 1 − P [Z < 0.88] =
1− 0.8106 = 0.1093. So, P [Y < 46.5] = 0.1093.

5. Find the probability that 46 < Z < 52. We have

P [46 < Y < 52] = P [46− µ < Y − µ < 52− µ] (6.26)

= P

[
46− µ
σ

<
Y − µ
σ

<
52− µ
σ

]
(6.27)

= P

[
46− 50

4
< Z <

52− 50

4

]
(6.28)

= P [−1.00 < Z < 0.50]. (6.29)
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We then use symmetry and the complement rule to find this probability
involving Z. We first have P [Z < 0.50] = 0.6915 using Table Z. We
then have P [Z < −1.00] = P [Z > 1.00] = 1 − P [Z < 1.00] = 1 −
0.8413 = 0.1587 by symmetry. Therefore, P [−1.00 < Z < 0.50] =
P [Z < 0.50] − P [Z < −1.00] = 0.6915 − 0.1587 = 0.5328, and so
P [46 < Y < 52] = 0.5328.

6. Find a number y0 such that P [Y < y0] = 0.70. This problem can also
be handled by converting it to one involving Z. We have

P [Y < y0] = P [Y − µ < y0 − µ] (6.30)

= P

[
Y − µ
σ

<
y0 − µ
σ

]
(6.31)

= P

[
Z <

y0 − 50

4

]
(6.32)

= P [Z < z0] (6.33)

where z0 = y0−50
4

. We then search for a value of z0 such that P [Z <
z0] = 0.70, and obtain z0 = 0.52 from Table Z. We then solve for y0 as
follows:

z0 =
y0 − 50

4
(6.34)

0.52 =
y0 − 50

4
(6.35)

4(0.52) = y0 − 50 (6.36)

2.08 = y0 − 50 (6.37)

2.08 + 50 = y0 (6.38)

52.08 = y0. (6.39)

So, y0 = 52.08 is the answer. In general, one would have z0 = y0−µ
σ

, so
y0 = σz0 + µ for any σ and µ.
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6.3 Expected values and variance for contin-

uous distributions

We saw earlier how a theoretical mean, variance, and standard deviation
could be calculated for a discrete random variable, using the concept of expec-
tation and its probability distribution. The same concepts can be extended
to continuous random variables and probability densities.

Let Y be a continuous random variable with some probability density.
The expected value of Y , or its theoretical mean, is defined by the equation

E[Y ] =

∫ ∞
−∞

yf(y)dy (6.40)

where f(y) is the probability density of Y , and the integral is carried out
over the interval −∞ to ∞ (Mood et al. 1974). This equation is analogous
to the definition of expected value for a discrete random variable, except that
we use integration rather than summation to make the calculation.

Similar to discrete random variables, we can also define the theoretical
variance of a continuous random variable using expectation. The variance of
a continuous random variable Y is defined as

V ar[Y ] = E[(Y − E[Y ])2] =

∫ ∞
−∞

(y − E[Y ])2f(y)dy. (6.41)

We can directly calculate these quantities for the uniform distribution.
Recall from calculus that

∫
udu = u2/2. We therefore have

E[Y ] =

∫ ∞
−∞

yf(y)dy =

∫ b

a

y

b− a
dy (6.42)

=
1

b− a
y2

2
|ba =

1

b− a
b2 − a2

2
(6.43)

=
(b− a)(b+ a)

2(b− a)
=
b+ a

2
(6.44)

Thus, the expected value (or theoretical mean) of a uniform random variable
is located at the center of the interval, midway between a and b. It can also be
shown using the above formula that the variance of the uniform distribution
is

V ar[Y ] =
(b− a)2

12
(6.45)
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The theoretical standard deviation is just the square root of this quantity.
What are these quantities for the normal distribution? Recall that the

normal distribution is specified by the two parameters µ and σ2. If Y ∼
N(µ, σ2), it can be shown (by evaluating the above integrals using the normal
density) that

E[Y ] = µ (6.46)

and
V ar[Y ] = σ2. (6.47)

Thus, the parameters µ and σ2 for this distribution are the theoretical mean
and variance E[Y ] and V ar[Y ].

6.4 Continuous random variables and sam-

ples

Suppose we have a set of observations and want to determine if they can be
modeled using the normal distribution. We now develop a graphical method
of comparing these observed data with the pattern expected for the normal
distribution, called a normal quantile plot. These plots exist for other
continuous distributions as well, and are generally called quantile-quantile
plots. The idea is to plot the quantiles for the observed data vs. the quantiles
for the normal distribution, with the quantiles for the normal on the x-axis
and the data quantiles on the y-axis. If the data are normally distributed,
then this plot will resemble a straight diagonal line. This is because we are
essentially plotting the quantiles for one normal distribution (the data) vs.
the quantiles for the normal distribution itself (Wilk & Gnanadesikan 1968).
This is like plotting the function y = ax, which is the equation of a line with
slope a. See Chapter 3 for a review of quantiles such as the median, the 25%
and 75% quartiles, and so forth.

We will illustrate the calculations for a normal quantile plot using a small
data set. Suppose we have n = 9 data points that take the values 5.33, 4.98,
5.80, 4.37, 3.83, 2.76, 3.82, 4.02, and 3.09. We first order or rank the data
points from smallest to largest, similar to finding the median (Table 6.1). We
then find the proportion p of observations less than each data point, using
the formula p = (j − 3/8)/(n + 1/4), where j is the order of the data point
and n is the sample size. Note that the median of these data (the value
4.02) corresponds to p = 0.5. The values 3/8 and 1/4 in the formula are
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there to prevent p from taking the value 0 or 1 for the largest and smallest
observations.

Table 6.1: Calculations for a normal quantile plot

j (order) Y[j] p z
1 2.76 0.068 -1.49
2 3.09 0.176 -0.93
3 3.82 0.284 -0.57
4 3.83 0.392 -0.27
5 4.02 0.500 0.00
6 4.37 0.608 0.27
7 4.98 0.716 0.57
8 5.33 0.824 0.93
9 5.80 0.932 1.49

We then determine the quantiles of the standard normal distribution that
correspond to the values of p for these data. For example, suppose we want
to find a value z such that P [Z < z] = 0.5, the median of the standard normal
distribution. We see from Table Z that z = 0 give the correct probability.
For p = 0.932, we find that z = 1.49 gives close to the correct probability.
We can similarly find the values of z for the other values of p, giving the
last column in Table 6.1. The final step is then to plot the ordered data vs.
the normal quantiles (Fig. 6.15). If the data are normally distributed, there
should be a linear relationship between the observed data and the normal
quantiles, and the normal quantile plot will be a diagonal line. This appears
to be the case for these data. If the data are non-normal, however, all manner
of curved relationships are possible.
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Figure 6.15: Normal quantile plot using Table 6.1
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6.4.1 Elytra lengths - SAS demo

We previously examined a data set involving the elytra lengths of male and
female T. dubius beetles and calculated various descriptive statistics using
proc univariate (see Chapter 3). We now examine whether these data are
normally-distributed using normal quantile plots. A normal quantile plot is
requested by adding the command qqplot with the normal option to the pro-
gram (see below). A histogram and fitted normal curve can also be generated
using the histogram command with the normal option. Separate analyses are
requested for male and female beetles using a class statement, because the
two sexes differ in size and could also have potentially different distributions.
We observe that the normal quantile plots for female beetles is close to linear,
suggesting a normal distribution, while the males show some curvature.

SAS Program

* normal_quantile_plot.sas;

title ’Fitting the normal to elytra data’;

data elytra;

input sex $ length;

datalines;

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

etc.

M 5.1

F 4.4

M 4.8

M 4.6

F 3.7

;

run;

* Descriptive statistics, histograms, and normal quantile plots;

proc univariate plots data=elytra;

* Separate analyses for each sex;

class sex;

var length;

histogram length/ vscale=count normal;

qqplot length / normal;

run;
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quit;
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Figure 6.16: normal quantile plot.sas - proc univariate
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Figure 6.17: normal quantile plot.sas - proc univariate
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Figure 6.18: normal quantile plot.sas - proc univariate

Figure 6.19: normal quantile plot.sas - proc univariate
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6.4.2 Development time - SAS demo

We now examine a data set involving the development time of T. dubius
beetles in various stages, in particular the time from the larval to prepupal
stage, and then from the prepupal to adult stage (Reeve et al. 2003). See
program below for details of this analysis. We see that the normal quantile
plots for both stages are quite nonlinear, suggesting a distribution different
from normal. This is a reflection of the skewed distributions of development
time we saw earlier for these data (Chapter 3). Skewed and nonnormal
distributions are a common feature of insect development data (Wagner et
al. 1984).

SAS Program

* normal_quantile_plot_2.sas;

title ’Fitting the normal to development data’;

data devel_time;

input time_pp time_adult;

datalines;

34 65

31 48

29 .

30 55

32 62

etc.

29 .

29 108

31 103

33 .

29 92

;

run;

* Descriptive statistics, histograms, and normal quantile plots;

proc univariate plots data=devel_time;

var time_pp time_adult;

histogram time_pp time_adult / vscale=count normal;

qqplot time_pp time_adult / normal;

run;

quit;
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Figure 6.20: normal quantile plot 2.sas - proc univariate
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Figure 6.21: normal quantile plot 2.sas - proc univariate
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Figure 6.22: normal quantile plot 2.sas - proc univariate
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Figure 6.23: normal quantile plot 2.sas - proc univariate
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6.6 Problems

1. A random variable Y has a uniform probability density with a = 0 and
b = 2.

(a) What is the expected value of Y , or E[Y ]? What is the variance
of Y , or V ar[Y ]?

(b) What are the 25%, 50%, and 80% quantiles or percentiles of Y ?

(c) Find the probability that Y < 0.05.

(d) Find a symmetric interval centered around y = 1 that has a prob-
ability of 0.95.

2. Suppose that Y has a normal distribution with µ = 1 and σ2 = 3, or
Y ∼ N(1, 3). Find the following quantities using Table Z.

(a) The probability that Y > 2.

(b) The probability that 1 < Y < 3.

(c) The probability that Y < 0.5.

(d) The probability that Y is not inside the interval given in b.

(e) A value of y0 such that the probability that Y < y0 is 0.9.

3. Suppose that Y has a normal distribution with µ = 2 and σ2 = 4, or
Y ∼ N(2, 4). Find the following quantities using Table Z:

(a) The probability that Y < 2.5.

(b) The probability that 0.5 < Y < 2.5.

(c) The probability that Y < 1.

(d) The probability that Y is not inside the interval given in b.

(e) A value of y0 such that the probability that Y < y0 is 0.4.


