
Chapter 5

Discrete Random Variables

Random variables and their associated probability distributions are a basic
component of statistical analyses. A statistician will examine the experiment
or study and determine the type of observations or data it produces (con-
tinuous, discrete, or categorical) and then select a random variable and its
distribution to model these data. We examine here three discrete random
variables, the binomial, Poisson, and negative binomial, and their probabil-
ity distributions. There are other discrete random variables but these three
are the most commonly encountered in practice. These variables only take
integer values and are typically used to model discrete or count data. We will
also see how to calculate the mean and variance for a discrete random vari-
able, using its probability distribution and a quantity called the expected
value.

The basic concept of a random variable is to map the outcome of some
random event into a number. For example, consider the dice cube example
from Chapter 4. Define a number Y that is the number of spots showing
on the dice – Y is a random variable. The sample space for Y would be
S = {1, 2, 3, 4, 5, 6} and the events any combination of these values. One
requirement for Y to be a random variable is that events of the form Y ≤ y
for any real number y are events in the probability space (Mood et al. 1974).
For example, suppose that y = 3.5 for the dice cube example. The set defined
by Y ≤ 3.5 corresponds to the event A = {1, 2, 3} and so is a member of
the probability space for this example. This requirement is necessary in
order to calculate probabilities for the random variable, and there is always
a probability distribution associated with a particular random variable.
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5.1 Binomial distribution

Binomial random variables are commonly used to model categorical observa-
tions or data that have two outcomes or states. For example, suppose we are
sampling animals and classifying them into two age classes, say either adult
(an event A) or juvenile (J). If we sample a single individual and classify
it, the sample space would be S = {A, J}. We could then define a proba-
bility distribution such that P [{A}] = p and P [{J}] = 1− p, where p is the
probability of observing an adult. Then, a random variable Y equal to the
number of adults would be a binomial random variable. The random vari-
able Y would have a sample space S = {0, 1} corresponding to the number
of adults. We could write the probability distribution for these two events as

P [Y = y] = py(1− p)1−y, (5.1)

where y = 0 or 1. To see how this formula works, suppose we want the
probability for Y = 1, so that y = 1. Inserting y = 1 in the above formula,
we obtain

P [Y = 1] = p1(1− p)1−1 = p1(1− p)0 = p. (5.2)

To find the probability for Y = 0, we insert y = 0 in the formula to find

P [Y = 0] = p0(1− p)1−0 = p0(1− p)1 = 1− p. (5.3)

Suppose that we now sample two animals and let Y again be the number of
adults. The sample space for Y would now be S = {0, 1, 2}. What would
be the probability distribution for this random variable? Assuming the two
animals sampled are independent events, the probability of seeing two adults
(Y = 2) in a row would be p× p = p2, while two juveniles (Y = 0) would be
(1− p)× (1− p) = (1− p)2. There are two ways of having one adult and one
juvenile, a adult first and a juvenile second, or vice versa. The probability
for each is p× (1− p), so the probability of seeing one adult would be twice
that, or 2p(1− p). A general formula describing the probability distribution
for this variable would be

P [Y = y] =

(
2

y

)
py(1− p)2−y. (5.4)

where (
2

y

)
=

2!

y!(2− y)!
. (5.5)
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The quantity
(

2
y

)
, known as a binomial coefficient, provides a way of calcu-

lating the number of ways y adults can occur among 2 sampled animals. It
is often read as ‘2 choose y’. It makes use of factorials, which are defined
for an integer j as the product j × (j − 1) × (j − 2)... × 1. For example,
4! = 4× 3× 2× 1. By convention, 0! = 1.

To see how this distribution works, we will calculate the probability for
different values of y. We have

P [Y = 0] =

(
2

0

)
p0(1− p)2−0 =

2!

0!(2− 0)!
(1− p)2 (5.6)

=
2× 1

1(2× 1)
(1− p)2 (5.7)

=
2

2
(1− p)2 = (1− p)2 (5.8)

and

P [Y = 1] =

(
2

1

)
p1(1− p)2−1 =

2!

1!(2− 1)!
p(1− p) (5.9)

=
2× 1

1(1)
p(1− p) (5.10)

=
2

1
p(1− p) = 2p(1− p). (5.11)

Finally, we have

P [Y = 2] =

(
2

2

)
p2(1− p)2−2 =

2!

2!(2− 2)!
p2 (5.12)

=
2× 1

(2× 1)1
p2 (5.13)

=
2

2
p2 = p2. (5.14)

Do these probabilities sum to 1, satisfying this requirement for a probability
distribution? We have (1−p)2+2p(1−p)+p2 = (1−p)(1−p)+2p−2p2+p2 =
1− 2p+ p2 + 2p− 2p2 + p2 = 1.

Suppose that we continue to sample l different animals, and let Y be the
number of adults. The sample space for this binomial random variable would
be S = {0, 1, 2, ..., l}. The probability distribution for this random variable
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is called the binomial distribution, and can be written using the formula

P [Y = y] = f(y) =

(
l

y

)
py(1− p)l−y (5.15)

where y = 0, 1, 2, ..., l (Mood et al. 1974). The notation f(y) is often used to
denote a probability distribution, which is a function of y given the parameter
values.

5.1.1 Binomial distribution - SAS demo

The SAS program below calculates and plots the binomial probabilities for
different values of y using the SAS function pdf, given the values of the
binomial parameters l and p. The probabilities are plotted for three different
values of p, with l = 10. We see that for p = 0.5 the probability distribution
has a peak at y = 5 (Fig. 5.2), indicating that five adults is the most likely
outcome in 10 sampled animals. For p = 0.25 an adult occurs only 25% of the
time, and so the probability distribution shifts to the left, with y = 2 having
the highest probability (Fig. 5.3). For an adult almost certain, p = 0.9, then
the probability distribution is shifted to the right with the peak at y = 9
(Fig. 5.4).

SAS Program

* binom_plot.sas;

title "Plot probabilities for the binomial distribution";

title2 "l = 10, p = 0.5";

data binom_plot;

* Binomial parameters here;

l = 10;

p = 0.5;

do y=0 to l;

* Binomial distribution function;

proby = pdf(’binomial’,y,p,l);

* Output y and proby to SAS data file;

output;

end;

run;

* Print data;

proc print data=binom_plot;

run;

* Plot probabilities;
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proc gplot data=binom_plot;

plot proby*y=1 / vref=0 wvref=3 vaxis=axis1 haxis=axis1;

symbol1 i=needle v=dot c=red width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;

Figure 5.1: binom plot.sas - proc print
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Figure 5.2: binom plot.sas - proc gplot

Figure 5.3: binom plot.sas - proc gplot
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Figure 5.4: binom plot.sas - proc gplot



104 CHAPTER 5. DISCRETE RANDOM VARIABLES

5.2 Poisson distribution

Poisson random variables are commonly used to model counts of organisms
or events in either space or time. For example, a Poisson random variable
could be used to model the number of organisms in a sampling quadrat,
or the number of flu infections per week in a city. The sample space for a
Poisson random variable Y is S = {0, 1, 2, ...,∞}, implying there is no upper
limit on the counts. The Poisson distribution is given by the formula

P [Y = y] = f(y) =
e−λλy

y!
(5.16)

where y = 0, 1, 2, ...,∞. The parameter λ controls the shape of the distribu-
tion and is equal to the mean value of Y . For example, suppose the λ = 2.
We have

P [Y = 0] = f(0) =
e−220

0!
=

0.13534(1)

1
= 0.13534, (5.17)

P [Y = 1] = f(1) =
e−221

1!
=

0.13534(2)

1
= 0.27068, (5.18)

P [Y = 2] = f(2) =
e−222

2!
=

0.13534(4)

2
= 0.27068, (5.19)

P [Y = 3] = f(3) =
e−223

3!
=

0.13534(8)

6
= 0.18045, (5.20)

P [Y = 4] = f(4) =
e−224

4!
=

0.13534(16)

24
= 0.09023 (5.21)

and so forth.
The Poisson distribution can arise in nature if certain assumptions hold

true about the underlying process generating the data or observations (Mood
et al. 1974, Snyder & Miller 1991). Suppose that we define an occurrence
as a plant being present in a quadrat, or a case of disease occurring in a
particular interval of time. For the distribution of occurrences to be
Poisson, we first need the probability of more than one occurrence
to be small relative to the probability of exactly one occurrence,
for a sufficiently small area of space (or short period of time). In
other words, two events are unlikely to occur in a small area or period of
time. Second, the number of occurrences in different areas of space
(or time intervals) should be independent. Another way of obtaining
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the Poisson distribution is as a limiting case of the binomial distribution. It
can be shown that if lp is held constant (by making p small) while l → ∞,
the binomial distribution approaches a Poisson with λ = lp.

5.2.1 Poisson distribution - SAS demo

The following SAS program illustrates how the Poisson distribution varies
for different values of λ. It is similar to the binomial distribution program,
using the SAS function pdf to again find the probabilities (see below). We
see that as λ increases, the Poisson distribution shifts to the right (Fig. 5.6,
5.7).

SAS Program

* Poisson_plot.sas;

title "Plot probabilities for the Poisson distribution";

title2 "lambda = 2";

data poisson_plot;

* Poisson parameter here;

lambda = 2;

* Maximum value of y for plot;

ymax = 20;

do y=0 to ymax;

* Poisson distribution function;

proby = pdf(’poisson’,y,lambda);

* Output y and proby to SAS data file;

output;

end;

run;

* Print data;

proc print data=poisson_plot;

run;

* Plot probabilities;

proc gplot data=poisson_plot;

plot proby*y=1 / vref=0 wvref=3 vaxis=axis1 haxis=axis1;

symbol1 i=needle v=dot c=red width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;
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etc.

Figure 5.5: Poisson plot.sas - proc print
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Figure 5.6: Poisson plot.sas - proc gplot

Figure 5.7: Poisson plot.sas - proc gplot
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5.3 Negative binomial distribution

Another useful tool for modeling count data is the negative binomial distri-
bution. It can be thought of as a mixture of Poisson distributions,
each with a different value of λ. For example, suppose that we are sam-
pling insects in a forest across a number of locations. At the ith location the
distribution of insects might be Poisson with parameter λi, but λi also differs
among locations. Then the distribution of insects, considered across all loca-
tions, may have a negative binomial distribution. Because the density of most
organisms typically varies in space, the negative binomial distribution often
provides a better description of count data than the Poisson. The sample
space for a negative binomial random variable Y is S = {0, 1, 2, ...,∞}, the
same as the Poisson. The probability distribution for the negative binomial
is given by the formula

P [Y = y] = f(y) =
Γ(k + y)

Γ(y + 1)Γ(k)

(m/(k +m))y

(1 +m/k)k
(5.22)

where y = 0, 1, 2, ...,∞. The Γ symbol stands for the gamma function,
which behaves like the factorial function but can be applied to non-integer
quantities. The negative binomial distribution has two parameters, m and
k, with m the mean of the distribution and k controlling its shape. For
large values of k the negative binomial distribution approaches the Poisson
distribution, while for small k the distribution becomes increasingly skewed
to the right. See Bliss and Fisher (1953) for further information on this
distribution.

5.3.1 Negative binomial distribution - SAS demo

The SAS program below shows how the shape of the negative binomial dis-
tribution varies with the parameter k. The program directly calculates the
probabilities using the formula above, rather than the SAS pdf function, be-
cause we are using a different parameterization of the distribution. We see
that distribution becomes more skewed to the right as k decreases (Fig. 5.9,
5.10).
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SAS Program

* negbin_plot.sas;

title "Plot probabilities for the negative binomial distribution";

title2 "m = 5, k = 5";

data negbin_plot;

* negative binomial parameters here;

m = 5; k = 5;

* Maximum value of y for plot;

ymax = 20;

do y=0 to ymax;

* Negative binomial distribution function;

proby = (gamma(k+y)/(gamma(y+1)*gamma(k)))*((m/(k+m))**y/(1+m/k)**k);

* Output y and proby to SAS data file;

output;

end;

run;

* Print data;

proc print data=negbin_plot;

run;

* Plot probabilities;

proc gplot data=negbin_plot;

plot proby*y=1 / vref=0 wvref=3 vaxis=axis1 haxis=axis1;

symbol1 i=needle v=dot c=red width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;



110 CHAPTER 5. DISCRETE RANDOM VARIABLES

etc.

Figure 5.8: negbin plot.sas - proc print
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Figure 5.9: negbin plot.sas - proc gplot

Figure 5.10: negbin plot.sas - proc gplot
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5.4 Expected values for discrete distributions

We have already seen how to calculate the mean, variance, and standard
deviation for a set of observations (see Chapter 3). It is possible to calculate
analogous quantities for probability distributions, such as the binomial, using
the concept of an expected value.

Let Y be a random variable with some discrete probability distribution,
such as the binomial, Poisson, or other distribution. The expected value or
theoretical mean of Y , denoted by the expression E[Y ], is defined by the
equation

E[Y ] =
∑
y

yP [Y = y] =
∑
y

yf(y). (5.23)

Here the summation is taken over all possible values of y for the probability
distribution. The expected value is a weighted average of each pos-
sible value of y, with the weights being the probability associated
with each y. It is a measure of the central location of the distribution of
Y , in analogy to the sample mean Ȳ for a data set. The expected value of Y
can also be thought of as the sample mean Ȳ of an infinitely large number
of observations of Y .

For example, let Y have a binomial distribution with l = 5 and p = 0.2.
We will first calculate some probabilities for the binomial distribution, then
use them to calculate the expected value of Y , or E[Y ]. We have

P [Y = 0] = f(0) =

(
5

0

)
0.20(1− 0.2)5−0 (5.24)

=
5!

0!(5− 0)!
1(0.85) (5.25)

=
120

1(120)
0.32768 (5.26)

= 0.32768. (5.27)
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P [Y = 1] = f(1) =

(
5

1

)
0.21(1− 0.2)5−1 (5.28)

=
5!

1!(5− 1)!
0.2(0.84) (5.29)

=
120

1(24)
0.08192 (5.30)

= 0.40960. (5.31)

P [Y = 2] = f(2) =

(
5

2

)
0.22(1− 0.2)5−2 (5.32)

=
5!

2!(5− 2)!
0.04(0.83) (5.33)

=
120

2(6)
0.02048 (5.34)

= 0.20480. (5.35)

P [Y = 3] = f(3) =

(
5

3

)
0.23(1− 0.2)5−3 (5.36)

=
5!

2!(5− 2)!
0.008(0.82) (5.37)

=
120

2(6)
0.00512 (5.38)

= 0.05120. (5.39)

P [Y = 4] = f(4) =

(
5

4

)
0.24(1− 0.2)5−4 (5.40)

=
5!

4!(5− 4)!
0.0016(0.81) (5.41)

=
120

24(1)
0.00128 (5.42)

= 0.00640. (5.43)
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P [Y = 5] = f(5) =

(
5

5

)
0.25(1− 0.2)5−5 (5.44)

=
5!

5!(5− 5)!
0.00032(0.80) (5.45)

=
120

120(1)
0.00032 (5.46)

= 0.00032. (5.47)

These probabilities sum to 1, indicating our calculations are correct. Alter-
nately, we could use the SAS program binom_plot.sas to find these probabil-
ities.

We will now calculate E[Y ] using these probabilities and the formula for
E[Y ] given above. We have

E[Y ] =
∑
y

yf(y) = 0(0.32768) + 1(0.40960) + 2(0.20480) (5.48)

+ 3(0.05120) + 4(0.00640) + 5(0.00032) (5.49)

= 0 + 0.40960 + 0.40960 (5.50)

+ 0.15360 + 0.02560 + 0.00160 (5.51)

= 1.00000 (5.52)

So, E[Y ] = 1 for the binomial distribution with l = 5 and p = 0.2.
For the binomial distribution in general, it can be shown that

E[Y ] = lp (5.53)

for any value of l and p. Thus, the expected value or theoretical mean for
the binomial distribution can be easily calculated given the parameters of
this distribution. Plugging l = 5 and p = 0.2 into this equation, we obtain
E[Y ] = 5 × 0.2 = 1.0, the same value as obtained using the expected value
formula.

Other probability distributions would have a different formula for the
expected value or theoretical mean, but the formula always involves the pa-
rameters of the distribution. For the Poisson distribution it can be shown
that E[Y ] = λ, while for the negative binomial distribution E[Y ] = m.

5.4.1 Variance for discrete distributions

We can also define the theoretical variance for a random variable Y using
expected values. This variance measures the dispersion of Y , and can also be
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thought of as the sample variance s2 of an infinite number of observations.
The variance of a discrete random variable Y , denoted by V ar[Y ], is defined
as

V ar[Y ] = E[(Y − E[Y ])2] =
∑
y

(y − E[Y ])2P [Y = y] (5.54)

=
∑
y

(y − E[Y ])2f(y). (5.55)

Note that this formula makes use of E[Y ], so it must be calculated first. As
an example, let Y have the same binomial distribution as before, with l = 5
and p = 0.2, for which E[Y ] = 1. Using the probabilities calculated above,
we have

V ar[Y ] =
∑
y

(y − E[Y ])2f(y) (5.56)

= (0− 1)2(0.32768) + (1− 1)2(0.40960) + (2− 1)2(0.20480) (5.57)

+ (3− 1)2(0.05120) + (4− 1)2(0.00640) + (5− 1)2(0.00032) (5.58)

= 1(0.32768) + 0(0.40960) + (1)0.20480 (5.59)

+ 4(0.05120) + 9(0.00640) + (16)0.00032 (5.60)

= 0.32768 + 0 + 0.20480 + 0.20480 + 0.05760 + 0.00512 (5.61)

= 0.8. (5.62)

For the binomial distribution, it can be mathematically shown that for any
value of l and p, we have

V ar[Y ] = lp(1− p). (5.63)

Thus, the theoretical variance for the binomial distribution can also be cal-
culated using the parameters of this distribution. Plugging l = 5 and p = 0.2
into this equation, we obtain V ar[Y ] = 5(0.2)(1− 0.2) = 0.8, the same value
as obtained using the variance formula.

Other probability distributions would have a different formula for the
theoretical variance. For the Poisson distribution it can be shown that
V ar[Y ] = λ. Because E[Y ] = λ for the Poisson, this implies the mean
and variance of a Poisson random variable are equal. For the negative bi-
nomial distribution, V ar[Y ] = m + m2/k, while E[Y ] = m. This implies
the variance of the negative binomial is always greater than its mean. The
theoretical standard deviation is simply

√
V ar[Y ].
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5.5 Discrete random variables and samples

Discrete random variables like the binomial and Poisson are used to model
real observations that are counts. But how well do these mathematical quan-
tities match the behavior of the observations? We will now develop a graph-
ical method of comparing the observed data with the pattern expected for
discrete random variables, in particular the Poisson and negative binomial
distributions. There are also statistical procedures called goodness-of-fit tests
that are used for this purpose, but we defer this to Chapter 20.

5.5.1 Parasitic wasps - SAS demo

Small insects are often sampled using sticky-traps, which are small cards cov-
ered with a substance called Tanglefoot®(The Tanglefoot Company, Grand
Rapids, MI). For example, Reeve & Cronin (2010) used this method to sam-
ple populations of the parasitic wasp Anagrus columbi , which attacks eggs
of the planthopper Prokelisia crocea. Suppose n = 100 traps are deployed
for some period of time, then the traps collected and the wasps counted.
If individual wasps are randomly and independently distributed across the
field, we would expect the number of wasps per trap to have a Poisson dis-
tribution. We can then compare the observed distribution with the expected
one for the Poisson distribution, to see if they resemble one another. If so,
we can say the Poisson distribution provides an adequate description of these
observations.

The first step in this procedure is simply to tabulate the number of traps
with 0, 1, 2, 3, ... wasps, which is the observed frequency distribution. We can
use proc freq in SAS to accomplish this task as in the following program. The
numbers listed as data here are the number of wasps for each of the n = 100
sticky-traps. The statement tables y tells proc freq to count the number of
observations for each value of y in the data set. The output generated is a
table of these frequencies.
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SAS Program

* poisson_freq.sas;

title ’Tabulate Poisson data’;

data poisson;

input y @@;

datalines;

4 6 3 5 3 1 3 3 4 2

4 0 2 3 1 3 4 6 5 1

3 3 4 3 2 3 7 4 3 3

4 3 4 3 4 0 3 0 3 3

4 8 2 2 4 2 5 3 3 2

1 4 1 1 5 2 4 1 2 6

3 3 3 1 1 2 1 5 3 5

3 2 4 3 4 1 2 3 1 3

4 4 4 6 6 2 0 1 4 2

2 2 3 4 3 0 1 1 0 2

;

run;

* Print observations;

proc print data=poisson;

run;

* Tabulate data into frequencies;

proc freq data=poisson;

tables y;

run;

quit;
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etc.

Figure 5.11: Poisson freq.sas - proc print

Figure 5.12: Poisson freq.sas - proc freq
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We now want to compare these observed frequencies with those expected
for the Poisson distribution. We first need to estimate the Poisson parameter
λ from the observed data using Ȳ (see Chapter 8 for a justification). We
then calculate the Poisson probabilities for λ = Ȳ , obtaining P [Y = y] for
values of y that spans or better exceeds the range of y values in the data set.
Because P [Y = y] is the probability or proportion of observations that take
the value y, the expected frequency with n observations is therefore equal
to n × P [Y = y]. We can then compare the observed frequencies with the
expected ones generated using the Poisson distribution. These calculations
can be automated using the SAS program listed below. The program first
uses proc univariate to find n, Ȳ , and the sample variance s2 for the observed
frequencies. We let proc univariate know that the data are in the form of
frequencies (the variable obsfreq), rather than individual observations, by
adding the command freq obsfreq.

The program then passes these results to a data step where the Poisson
probabilities and expected frequencies are calculated, which are then plotted
across a range of y values using proc gplot. See SAS output and graph
below. We first see that sample mean and variance are similar in magnitude
(Ȳ = 2.910 vs. s2 = 2.628), suggesting these data are close to Poisson (recall
that E[Y ] = V ar[Y ] = λ for this distribution). In addition, the observed and
expected frequencies are quite similar, again implying an adequate fit by the
Poisson distribution. There are some small differences in the observed and
expected frequencies, which is to be expected because the observed ones are
random quantities.

SAS Program

* Poisson_fit.sas;

title ’Fitting the Poisson to frequency data’;

data poisson;

input y obsfreq;

* Generate offset y values for plot;

yexp = y - 0.1; yobs = y + 0.1;

datalines;

0 6

1 15

2 17

3 29

4 20

5 6

6 5
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7 1

8 1

9 0

10 0

;

run;

* Print data set;

proc print data=poisson;

run;

* Descriptive statistics, save ybar, n, and var to data file;

proc univariate data=poisson;

var y;

histogram y / vscale=count;

freq obsfreq;

output out=stats mean=ybar n=n var=var;

run;

* Print output data file;

proc print data=stats;

run;

* Calculate expected frequencies using ybar;

data poisfit;

if _n_ = 1 then set stats;

set poisson;

poisprob = pdf(’poisson’,y,ybar);

expfreq = n*poisprob;

run;

* Print observed and expected frequencies;

proc print data=poisfit;

run;

* Plot observed and expected frequencies;

proc gplot data=poisfit;

plot expfreq*yexp=1 obsfreq*yobs=2 / overlay legend=legend1 vref=0 wvref=3

vaxis=axis1 haxis=axis1;

symbol1 i=needle v=circle c=red width=3 height=2;

symbol2 i=needle v=square c=blue width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

quit;
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etc.

Figure 5.13: Poisson fit.sas - proc print
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Figure 5.14: Poisson fit.sas - proc univariate



5.5. DISCRETE RANDOM VARIABLES AND SAMPLES 123

Figure 5.15: Poisson fit.sas - proc print

Figure 5.16: Poissonfit.sas - proc gplot
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5.5.2 Corn borers - SAS demo

We now examine the spatial distribution of an insect pest, the European
corn borer Ostrinia nubilalis , as reported by Bliss and Fisher (1953). The
number of borers was recorded for 120 hills in which corn was planted. These
data are already tabulated and can be directly inserted in the SAS program
poisson_fit2.sas (see below). For this example, we see that the Poisson
distribution provides a relatively poor fit (see Fig. 5.20) - there are more
zeroes (y = 0) and large values (y ≥ 7) in the observed frequencies than
predicted by the Poisson. We also note that the sample variance s2 = 7.770
is considerably larger than the mean Ȳ = 3.167, while for the Poisson these
two quantities should be equal. This finding also suggests that these data
are not Poisson in distribution.

SAS Program

* Poisson_fit2.sas;

title ’Fitting the Poisson to frequency data’;

data poisson;

input y obsfreq;

* Generate offset y values for plot;

yexp = y - 0.1; yobs = y + 0.1;

datalines;

0 24

1 16

2 16

3 18

4 15

5 9

6 6

7 5

8 3

9 4

10 3

11 0

12 1

;

run;

* Print data set;

proc print data=poisson;

run;

* Descriptive statistics, save ybar, n, and var to data file;

proc univariate data=poisson;

var y;
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histogram y / vscale=count;

freq obsfreq;

output out=stats mean=ybar n=n var=var;

run;

* Print output data file;

proc print data=stats;

run;

* Calculate expected frequencies using ybar;

data poisfit;

if _n_ = 1 then set stats;

set poisson;

poisprob = pdf(’poisson’,y,ybar);

expfreq = n*poisprob;

run;

* Print observed and expected frequencies;

proc print data=poisfit;

run;

* Plot observed and expected frequencies;

proc gplot data=poisfit;

plot expfreq*yexp=1 obsfreq*yobs=2 / overlay legend=legend1 vref=0 wvref=3

vaxis=axis1 haxis=axis1;

symbol1 i=needle v=circle c=red width=3 height=2;

symbol2 i=needle v=square c=blue width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

quit;
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Figure 5.17: Poisson fit2.sas - proc print
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Figure 5.18: Poisson fit2.sas - proc univariate
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Figure 5.19: Poisson fit2.sas - proc print

Figure 5.20: Poissonfit2.sas - proc gplot
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As an alternative to the Poisson, we can try fitting the negative bino-
mial distribution using a similar SAS program. This distribution has two
parameters, m and k, that must also be estimated before we can fit the dis-
tribution. The parameter m can be estimated using Ȳ as with the Poisson,
but k is best estimated using a technique called maximum likelihood (see
Chapter 8). We will use a SAS procedure that can model count data using
the negative binomial distribution, proc genmod, in order to estimate k (SAS
Institute Inc. 2018). The output of proc genmod is manipulated in several
data steps to combine these estimates with the observed frequency data, and
then the negative binomial probabilities and expected frequencies calculated
and plotted. See SAS program and output below.

We see that the expected frequencies for the negative binomial distri-
bution provide a better match to the observed ones for this data set (Fig.
5.22). We also note that the variance predicted for the negative binomial
distribution is close to the observed variance. From the negative binomial
fit, we have m = 3.167 and k = 1.760, and so the estimated variance is
m + m2/k = 3.167 + 3.1672/1.760 = 7.459, while the observed variance is
s2 = 7.770. This further implies the negative binomial provides a better fit
to these data than the Poisson distribution.
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SAS Program

* negbin_fit2.sas;

title ’Fitting the negative binomial to frequency data’;

data negbin;

input y obsfreq;

* Generate offset y values for plot;

yexp = y - 0.1; yobs = y + 0.1;

datalines;

0 24

1 16

2 16

3 18

4 15

5 9

6 6

7 5

8 3

9 4

10 3

11 0

12 1

;

run;

* Print data set;

proc print data=negbin;

run;

* Descriptive statistics, save ybar, n, and var to data file;

proc univariate data=negbin;

var y;

histogram y / vscale=count;

freq obsfreq;

output out=stats mean=ybar n=n var=var;

run;

* Print output data file;

proc print data=stats;

run;

* Estimate m and k for the negative binomial distribution;

proc genmod data=negbin;

model y = / dist=negbin;

freq obsfreq;

ods output ParameterEstimates=params;

run;

* Pick out value of m from genmod output;

data m;
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set params;

if _n_ = 1;

m = exp(Estimate);

keep m;

run;

* Pick out value of k from genmod output;

data k;

set params;

if _n_ = 2;

k = 1/Estimate;

keep k;

run;

* Put m and k in one data file;

data params;

merge m k;

run;

* Calculate expected frequencies using m and k;

data nbfit;

if _n_ = 1 then set stats;

if _n_ = 1 then set params;

set negbin;

nbprob = (gamma(k+y)/(gamma(y+1)*gamma(k)))*((m/(k+m))**y/(1+m/k)**k);

expfreq = n*nbprob;

run;

* Print observed and expected frequencies;

proc print data=nbfit;

run;

* Plot observed and expected frequencies;

proc gplot data=nbfit;

plot expfreq*yexp=1 obsfreq*yobs=2 / overlay legend=legend1 vref=0 wvref=3

vaxis=axis1 haxis=axis1;

symbol1 i=needle v=circle c=red width=3 height=2;

symbol2 i=needle v=square c=blue width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

quit;
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Figure 5.21: negbin fit2.sas - proc print

Figure 5.22: negbin fit2.sas - proc gplot
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5.6 Classifying spatial or temporal patterns

The spatial distribution of organisms, or the temporal occurrence of events
like cases of disease, is often compared with the Poisson distribution. This
distribution essentially assumes a random, independent distribution of organ-
isms or events, and if the observed distribution differs from the Poisson then
this could indicate some interesting biology. For example, if the observed
frequencies have a distribution with more extreme values (low or high) than
the Poisson, with s2 > Ȳ , this implies organisms are unevenly distributed
in space, or events in time. A pattern like this is often called an overdis-
persed distribution, or alternatively a clumped, aggregated, or contagious
distribution (Pielou 1977, Begon et al. 2006). One method of quantifying
the level of overdispersion is to fit the negative binomial distribution to the
data and use the value of k as an index. Small values of k (say k < 5) imply
an overdispersed distribution, while larger ones indicate a distribution close
to Poisson. More rarely, an observed distribution may have fewer extreme
values than the Poisson, with s2 < Ȳ , implying the organisms are evenly
distributed in space (or events in time). This is called an underdispersed
distribution, also known as a regular, even, or repulsed distribution.

The figures below provide examples of spatial distributions that are overdis-
persed, Poisson, or underdispersed. Note the obvious clusters of organisms in
the overdispersed example (Fig. 5.23). This might occur because the clusters
are offspring from a single parent, the organisms are responding to resources
that are clumped in space, or because the organisms are attracted to one
another. The Poisson data also show a few clusters (Fig. 5.24), but these are
chance occurrences. If we were to divide this graph into quadrats and count
the number of organisms per quadrat, we would find the frequency distribu-
tion is close to Poisson. In contrast to the other examples, the organisms are
spaced apart to some extent in the underdispersed example (Fig. 5.25). This
could occur because they are territorial, compete for resources, or otherwise
regulate their numbers in some fashion (Ridout & Besbeas 2004).
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Figure 5.23: Overdispersed distribution of organisms in space

Figure 5.24: Poisson distribution of organisms in space
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Figure 5.25: Underdispersed distribution of organisms in space
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5.8 Problems

1. Consider the dice cube example from Chapter 4, and define a random
variable Y that is the number of spots showing on the dice cube. Find
E[Y ] and V ar[Y ] for this random variable. Show your work.

2. Suppose that a random variable Y has a discrete distribution with the
following probabilities:

y P [Y = y]
0 0.5000
1 0.2500
2 0.1250
3 0.0625
4 0.0625

(a) What is the expected value of Y , or E[Y ]?

(b) What is the variance of Y , or V ar[Y ]?

3. An entomologist studies the spatial distribution of aphids in a field.
They randomly select 100 locations within the field and count the num-
ber of aphids on the plants at each location. The following observed
frequency distribution was obtained:

Aphids (y) Frequency
0 19
1 22
2 16
3 10
4 11
5 11
6 6
7 2
8 1
9 1
10 1
11 0
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(a) Use the SAS program Poisson_fit.sas to calculate Ȳ and s2, and
generate a plot of the observed frequencies vs. those expected for
the Poisson distribution. Attach your SAS program and output.

(b) Based on the above results, do the data have a Poisson distri-
bution? Explain your answer using the pattern of observed and
expected frequencies, and the values of Ȳ and s2. Is the pattern
random (Poisson), overdispersed, or underdispersed?

(c) What are some possible biological explanations for this pattern?

4. A field is surveyed for golden mice (Ochrotomys nuttalli) using a grid
of baited traps. A total of 100 traps were deployed and the number of
mice counted in each trap. The following frequency distribution was
obtained:

Mice (y) Frequency
0 55
1 21
2 10
3 7
4 4
5 2
6 1
7 0
8 0

(a) Use the program Poisson_fit.sas to calculate to calculate Ȳ and
s2, and generate a plot of the observed frequencies vs. those ex-
pected for the Poisson distribution. Attach your program and
output.

(b) Based on the above results, do the data have a Poisson distri-
bution? Explain your answer using the pattern of observed and
expected frequencies, and the values of Ȳ and s2. Is the pattern
random (Poisson), overdispersed, or underdispersed?


