
Chapter 19

More Complex ANOVA
Designs

This chapter examines three designs that incorporate more factors and in-
troduce some new elements of experimental design. They are three-way
ANOVA, one-way nested ANOVA, and analysis of covariance (ANCOVA).
These are common designs whose elements can be combined to generate more
elaborate ones. A useful guide to complex ANOVA designs is Winer et al.
(1991), who provide a description and statistical model for each design. Once
a particular design is identified, the statistical model can be used to program
the analysis in SAS or other software.

19.1 Three-way ANOVA

We will first discuss three-way ANOVA, an analysis which examines how
three different factors influence the means of the different groups. The three
factors may be any combination of fixed or random effects and are typically
referred to a Factors A, B, and C. In this design, there are one or more repli-
cate observations for each combination of the three factors. The statistical
analysis for three-way ANOVA designs may include F tests for the main ef-
fects of the factors as well as the interactions among them. For example, if
the design has replication and all three factors are fixed, there are F tests
for the main effects (Factor A, B, C), each pairwise interaction (A × B, A ×
C, B × C), and even a three-way interaction (A × B × C). The additional
complexity of this design with its many interactions can make interpretation
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of the results quite challenging.
As an example of three-way ANOVA, we will analyze data from an ex-

periment by Maestre & Reynolds (2007). This study examined how overall
nutrient and water availability, and nutrient heterogeneity, affected grassland
biomass production (Table 19.1). Nutrient heterogeneity was manipulated by
placing the nitrogen at a particular location within the container vs. an even
distribution. See Chapter 14 for further description of this experiment. We
will use the notation Yijkl to reference the observations in three-way ANOVA
designs. The i subscript refers to the group or treatment within Factor A (in
this case nitrogen heterogeneity), j the treatment within Factor B (nitrogen
levels), k the treatment within Factor C (water levels), while l refers to the
observation within the treatment. For example, Y1134 refers to the fourth ob-
servation in the no nutrient heterogeneity, 40 mg N, 375 ml water treatment,
which is 7.901.
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Table 19.1: Example 1 - Effect of nitrogen heterogeneity, nitrogen availability, and water availability on the
total biomass of grassland plants grown in microcosms (Maestre & Reynolds 2007). The table illustrates
how the subscripts for Yijkl vary across treatments for a portion of the data set (see Chapter 22 for the full
version).

N het. (Y/N) N (mg) Water (ml/week) Yijkl = Biomass i j k l
N 40 125 4.372 1 1 1 1
N 40 125 4.482 1 1 1 2
N 40 125 4.221 1 1 1 3
N 40 125 3.977 1 1 1 4
N 40 250 7.400 1 1 2 1
N 40 250 8.027 1 1 2 2
N 40 250 7.883 1 1 2 3
N 40 250 7.769 1 1 2 4
N 40 375 7.226 1 1 3 1
N 40 375 8.126 1 1 3 2
N 40 375 6.840 1 1 3 3
N 40 375 7.901 1 1 3 4

etc.

Y 120 250 10.731 2 3 2 1
Y 120 250 12.640 2 3 2 2
Y 120 250 10.350 2 3 2 3
Y 120 250 11.550 2 3 2 4
Y 120 375 14.697 2 3 3 1
Y 120 375 17.826 2 3 3 2
Y 120 375 14.711 2 3 3 3
Y 120 375 13.614 2 3 3 4
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19.1.1 Three-way fixed effects model

Suppose that we want to model the observations in a study like Example
1, where there are Factors A, B, and C. Assume the design is factorial with
every possible combination of the three factors, with n > 1 observations of
each one. This design is often called three-way ANOVA with replication. A
common model for the observations Yijkl in such designs (Winer et al. 1991)
is

Yijkl = µ+ αi + βj + γk + (αβ)ij + (βγ)jk + (αγ)ik + (αβγ)ijk + εijkl. (19.1)

Here µ is the grand mean of the observations, while αi is the deviation from
µ caused by the ith level or treatment of Factor A, βj the deviation caused
by the jth level of Factor B, and γk is the deviation caused by the kth level of
Factor C. These terms are the main effects in the model. The terms (αβ)ij,
(βγ)jk, and (αγ)ik are pairwise or first-order interactions among Factors
A and B, B and C, and A and C (A × B, B × C, and A × C). They are
similar to the interaction term in two-way ANOVA, but with three factors in
the design there are more possibilities for interaction among them. The term
(αβγ)ijk models a three-way or second-order interaction (A × B × C)
among all three factors. It can be thought of as an interaction of interactions,
i.e., the interaction between Factors A and B could change across levels of C.
The εijkl term represents the usual random departures from the mean value
predicted by the main effects and interactions due to natural variability.

The objective in three-way ANOVA is to test whether Factor A, B, and
C have an effect on the group means, and whether there are interactions
among these factors. For Factor A this amounts to testing H0 : all αi = 0,
and similarly H0 : all βj = 0 for Factor B and H0 : all γk = 0 for Factor
C. For the A × B interaction, we would test H0 : (αβ)ij = 0, and similarly
H0 : (αγ)ik = 0 for the A × C and H0 : (βγ)jk = 0 for the B × C interactions.
For the three-way interaction, A × B × C, we are interested in testing H0 :
all (αβγ)ijk = 0. The F tests for these hypotheses can be constructed using
various sums of squares and mean squares, similar to two-way ANOVA, and
are also examples of likelihood ratio tests. We will not consider this process
in detail but instead proceed directly to the analysis of the Example 1 data
set using SAS.
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19.1.2 Three-way ANOVA for Example 1 - SAS demo

The first step in the program (see below) is to read in the observations using
a data step, with the first variable (nitrohet) denoting the nitrogen hetero-
geneity treatment, while nitrogen and water represent the nitrogen and water
levels. The variable biomass is then log-transformed before analysis, yield-
ing the dependent variable y = log10(biomass}. Three separate plots then
requested using proc gplot (SAS Institute Inc. 2016), one for every pairwise
combination of nitrohet, nitrogen, and water. These plots will allow us to
examine the main effects and all pairwise interactions among the treatments.
The choice as to whether a particular treatment is plotted on the x-axis or
appears as separate groups (lines) on the graph is arbitrary. Like two-way
ANOVA, if the lines are not parallel in a plot this suggests there is an interac-
tion between the factors. The second set of proc gplot graphs is intended to
illustrate the three-way interaction among the factors. Each plot illustrates
the interaction between nitrogen and water at one level of nitrohet. These
plots will appear different if there is substantial interaction among the three
factors.

The next section of the program conducts the three-way ANOVA using
proc glm (SAS Institute Inc. 2018). The class statement tells SAS that
nitrohet, nitrogen, and water are used to classify the observations into the 18
different treatment groups. The model statement tells SAS the form of the
ANOVA model. Recall that the model for fixed effects three-way ANOVA
(Eq. 19.1). The statement nitrohet|nitrogen|water is SAS shorthand for
this model, and will automatically generate all the possible main effects and
interactions of the three factors.

The lsmeans statement causes proc glm to calculate quantities called least
squares means for each level of nitrohet, nitrogen, and water. When the data
are balanced these are equivalent to the means for each treatment group, but
least squares means have some advantages for unbalanced data and other
statistical models. The option adjust=tukey requests multiple comparisons
among treatments using the Tukey method. This is useful for comparing the
different levels of the main effects. However, tests for the main effects as well
as multiple comparisons should be treated with caution in the presence of
strong interaction (see Chapter 14 for discussion of this issue).

We now examine the results of the tests generated by SAS, examining the
interactions first (Fig. 19.6). We are primarily interested in the results for
Type III sums of squares. We see that the three-way nitrogen heterogeneity
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× nitrogen × water interaction was nonsignificant (F4,54 = 1.39, P = 0.2492).
The two graphs that illustrate this interaction appear similar, further indi-
cating this interaction is weak or absent (Fig. 19.5). Turning to the pair-
wise interactions, we see that the nitrogen heterogeneity × nitrogen inter-
action was nonsignificant (F2,54 = 0.93, P = 0.4017). In agreement with
this result, the corresponding graph for this interaction (Fig. 19.2) sug-
gests these two treatments are additive. The nitrogen × water interaction
(F4,54 = 12.90, P < 0.0001) was highly significant. Examining Fig. 19.3, we
see that the source of this interaction was a reduced effect of watering at
lower nitrogen levels. The nitrogen heterogeneity × water interaction was
also highly significant (F2,54 = 13.10, P < 0.0001). This interaction was
apparently generated by a stronger effect of nitrogen heterogeneity at the
lowest water level (Fig. 19.4). Overall, the significant interactions suggest
that effects of these factors on biomass are not additive (Maestre & Reynolds
2007).

The SAS analysis also found highly significant main effects of nitrogen
heterogeneity (F1,54 = 144.14, P < 0.0001), nitrogen (F2,27 = 129.71, P <
0.0001) and water (F2,27 = 657.00, P < 0.0001) on biomass, as well as sig-
nificant differences among all levels of these treatments (Fig. 19.7). We can
judge the strength of these effects through the interaction plots as well as
the sum of squares values. Watering appears to have the largest effect on
biomass, followed by nitrogen and nitrogen heterogeneity. The heterogeneity
result is particularly intriguing, because more biomass was generated when
this nutrient was heterogeneously distributed in space. Maestre & Reynolds
(2007) suggest this occurred because nutrient patches encourage root pro-
liferation, leading to increased nutrient uptake and overall growth. Even
though there were significant interactions in this analysis, the main effects
were larger and explained most of the variation in these data.
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SAS program

* Maestre_biomass_3way.sas;

title "Three-way ANOVA for biomass";

title2 "Data from Maestre and Reynolds (2007)";

data maestre;

input nitrohet $ nitrogen water biomass;

* Apply transformations here;

y = log10(biomass);

datalines;

N 40 125 4.372

N 40 125 4.482

N 40 125 4.221

N 40 125 3.977

N 40 250 7.400

N 40 250 8.027

N 40 250 7.883

N 40 250 7.769

etc.

Y 120 375 14.697

Y 120 375 17.826

Y 120 375 14.711

Y 120 375 13.614

;

run;

* Print data set;

proc print data=maestre;

run;

proc gplot data=maestre;

plot y*nitrohet=nitrogen y*nitrogen=water y*nitrohet=water / vaxis=axis1

haxis=axis1 legend=legend1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Sort data by nitrohet levels;

proc sort data=maestre;

by nitrohet;

run;

* Plots to show three-way interaction;

proc gplot data=maestre;

by nitrohet;

plot y*nitrogen=water / vaxis=axis1 haxis=axis1 legend=legend1;
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symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Three-way ANOVA with all fixed effects;

proc glm plots=diagnostics data=maestre;

class nitrohet nitrogen water;

model y = nitrohet|nitrogen|water;

lsmeans nitrohet nitrogen water / adjust=tukey cl lines;

run;

quit;

etc.

Figure 19.1: Maestre biomass 3way.sas - proc print



19.1. THREE-WAY ANOVA 599

Figure 19.2: Maestre biomass 3way.sas - proc gplot

Figure 19.3: Maestre biomass 3way.sas - proc gplot
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Figure 19.4: Maestre biomass 3way.sas - proc gplot
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Figure 19.5: Maestre biomass 3way.sas - proc gplot
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Figure 19.6: Maestre biomass 3way.sas - proc glm
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Figure 19.7: Maestre biomass 3way.sas - proc glm
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19.1.3 Tests for main effects with interaction

As discussed in Chapter 14, there are questions as to whether tests of main
effects are appropriate when interaction is significant, and these extend to
three-way designs. As an alternative, we can use the slice option for lsmeans

to avoid tests of the main effects. The modified SAS code is listed below
along with the output. We first fit the full model including all the interactions
(see Fig. 19.8), and observe that the nitrogen heterogeneity × nitrogen ×
water interaction was nonsignificant (F4,54 = 1.39, P = 0.2492), as was the
nitrogen heterogeneity × nitrogen interaction (F2,54 = 0.93, P = 0.4017). We
then drop these interactions and refit the model (Fig. 19.9). The remaining
two interactions were both highly significant in this reduced model (nitrogen
heterogeneity × water, F2,60 = 12.79, P < 0.0001; nitrogen × water, F4,60 =
12.61, P < 0.0001). We skip the tests of the main effects because of these
highly significant interactions, and instead use the slice option to test for a
nitrogen heterogeneity effect at each water level, and vice versa. These tests
were all highly significant, suggesting that nitrogen heterogeneity affected
biomass at every water level, and water affected biomass at every nitrogen
heterogeneity level (Fig. 19.10). Similar tests could be conducted to examine
the effects of nitrogen and water.

SAS Program

* Three-way ANOVA with interaction;

title3 "MODEL WITH ALL FOUR INTERACTIONS";

proc glm data=maestre;

class nitrohet nitrogen water;

model y = nitrohet|nitrogen|water / ss2;

output out=resids p=pred r=resid;

run;

* Three-way ANOVA dropping ns interactions;

title3 "MODEL WITH ONLY SIGNIFICANT INTERACTIONS";

proc glm data=maestre;

class nitrohet nitrogen water;

model y = nitrohet nitrogen water nitrohet*water nitrogen*water / ss2;

lsmeans nitrohet*water / slice=water slice=nitrohet;

run;
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Figure 19.8: Maestre biomass 3way new.sas - proc glm (1)
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Figure 19.9: Maestre biomass 3way new.sas - proc glm (2)
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Figure 19.10: Maestre biomass 3way new.sas - proc glm (2)
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19.1.4 Other three-way designs

The Maestre & Reynolds (2007) experiment had four replicate containers for
each treatment combination (n = 4), and so it was possible to fit a model with
a three-way interaction, namely nitrogen heterogeneity × nitrogen × water.
Suppose now there was only observation for each treatment combination
(n = 1). It is still possible to analyze these data using three-way ANOVA,
but the data are not sufficient to fit a model with a three-way interaction.
We would therefore use the model

Yijk = µ+ αi + βj + γk + (αβ)ij + (βγ)jk + (αγ)ik + εijk. (19.2)

The equivalent model statement for proc glm would be

model y = nitrohet nitrogen water nitrohet*nitrogen nitrohet*water

nitrogen*water;

There is no shorthand method of specifying this model. The SAS output
would be interpreted in the same way as the model with replication, except
there would be no test for a three-way interaction.

Another common three-way design could have one or more factors that
are random effects. For example, suppose that one manipulated nitrogen and
water levels similar to Maestre & Reynolds (2007) but conducted the exper-
iment in three different blocks, either different locations in the greenhouse
or points in time. Block could be a random effect in this design, and the
corresponding model would be

Yijkl = µ+αi +βj +Ck + (αβ)ij + (βC)jk + (αC)ik + (αβC)ijk + εijkl. (19.3)

Here C stands for a random block effect, with C ∼ N(0, σ2
C). Note that

every interaction term involving C is also considered a random effect. This
model could be analyzed with proc mixed (SAS Institute Inc. 2018) using the
following SAS statements:

proc mixed cl;

class nitrogen water block;

model y = nitrogen water nitrogen*water / ddfm=kr;

random block block*nitrogen block*water block*nitrogen*water;

run;
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19.2 One-way nested ANOVA

The second design we will examine are called one-way nested designs. There
are two factors in this design, a Factor A that may be a fixed or random
effect, and a random nested Factor B. Nested means that for each level of
Factor A, there are several levels of Factor B that are unique to that level of
A. There are several replicate observations for each combination of Factor A
and B.

As an example of this design, we will examine a genetic study of a minute
parasitic wasp, Anagrus delicatus (Hymenoptera: Mymaridae). This wasp
attacks eggs of the planthopper Prokelisia marginata (Homoptera: Delphaci-
dae), a salt marsh insect that feeds on Spartina plants. Cronin & Strong
(1996) were interested in the genetics of various wasp traits, including the
number of eggs carried by the wasps themselves, ovipositor length, and vari-
ous behavioral traits. They collected female wasps from three separate sites
in San Franciso Bay and established genetically identical isolines from in-
dividual wasps collected from each site. They then measured the traits for
a number of individuals from each isoline. Isolines are the nested factor in
this design, because each isoline was established from a single site. Sites
were classified as a fixed effect because there were essentially only three sites
available for sampling, and so the sites were not randomly selected from a
population of sites. Example 2 below shows a simulated data set based on
this study, with three sites, 14 isolines per site, and eight individuals per
isoline.
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Table 19.2: Example 2 - Fecundity for Anagrus delicatus collected from three
different sites, with 14 isolines per site and eight wasps per isoline. The data
were simulated from results presented in Cronin and Strong (1996). Note
that the values in the site, isoline, and wasp columns also correspond to the
subscripts for Yijk. See Chapter 22 for the full version of this data set.

Site Isoline Wasp Yijk = eggs
1 1 1 37
1 1 2 41
1 1 3 46
1 1 4 44
1 1 5 43
1 1 6 41
1 1 7 38
1 1 8 37
1 2 1 37
1 2 2 28
1 2 3 34
1 2 4 37
1 2 5 35
1 2 6 39
1 2 7 36

etc.

3 13 1 36
3 13 2 39
3 13 3 36
3 13 4 30
3 13 5 37
3 13 6 32
3 13 7 38
3 13 8 39
3 14 1 32
3 14 2 34
3 14 3 41
3 14 4 33
3 14 5 35
3 14 6 35
3 14 7 34
3 14 8 31
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19.2.1 Nested ANOVA models

Suppose that we want to model the observations in a study like Example 2,
where there is a fixed Factor A and a nested Factor B. A common model for
the observations Yijk in such designs (Winer et al. 1991) is

Yijk = µ+ αi +Bj(i) + εijk. (19.4)

Here µ is the grand mean of the observations, αi the deviation from µ caused
by the ith level or treatment of Factor A, and Bj(i) the random deviation
caused by the jth level of Factor B nested within the ith level of Factor
A. Bj(i) is assumed to be normally distributed with mean zero and variance
σ2
B(A), or Bj(i) ∼ N(0, σ2

B(A)), while εijk ∼ N(0, σ2) as usual. Bj(i) and εijk
are assumed to be independent. This model has two variance components,
namely σ2

B(A) and σ2.
The behavior of this model is illustrated in Fig. 19.11, for a = 3 levels

of Factor A and b = 4 levels of Factor B nested within each A. The figure
illustrates how the value of αi shifts the mean of the observations away from
µ, similar to other ANOVA models. The Bj(i) values, which are random
variables, shift the observations for each nested level away from the values
set by µ + αi. The values of Bj(i) are different for each level of Factor A
because they are random quantities.

The usual objectives for this nested ANOVA design are to test for Factor
A effects, and estimate the variance components σ2

B(A) and σ2. For Factor A,
this amounts to testing H0 : all αi = 0. We will not consider this process in
detail but proceed to the analysis and interpretation of the Example 2 data
set. We will use proc mixed for the analysis because this design involves a
mixed model.
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Figure 19.11: Mixed model for nested ANOVA showing the Factor A and B
effects.

19.2.2 Nested ANOVA for Example 2 - SAS demo

The first step in analyzing the Example 2 data is to read the observations
using a data step, with the variables site and isoline denoting the collection
site and Anagrus isoline (see program below), while the dependent variable
is eggs. Although the isolines are numbered similarly across the three sites,
note they are actually unique to each site and so are nested within sites. The
variable wasp refers to a particular wasp within each isoline, but is not used in
the analyses. Two plots are then requested using proc gplot (SAS Institute
Inc. 2016), one showing the mean for each site and so illustrating the site
effect. The second plot shows the individual wasps color-coded by isoline,
allowing for a visual comparison of variation among and within isolines. The
x-axis position of each wasp is jittered to keep the points from overlapping.
This involves adding a small random quantity to the site value, generating
a new variable called site_jit that differs for each wasp.

The next section of the program conducts the nested ANOVA using
proc mixed (SAS Institute Inc. 2018). The class statement tells SAS that
site and isoline are used to classify the observations. Next, the fixed effect
site is listed in the model statement, while the random, nested effect of isoline
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is incorporated in the random statement. SAS uses the syntax isoline(site)

to indicate that isoline is nested within site. An lsmeans statement is used to
compared the different sites using the Tukey method.

There appears to be little difference among the sites in the mean number
of eggs per wasp (Fig. 19.13), and the test of the site effect was non-significant
(F2,39 = 2.3, P = 0.1323) (Fig. 19.16). We next look at the estimates of the
variance components. The variance among isolines within sites (σ̂2

B(A) =

σ̂2
isoline(site) = 10.17) was substantial relative to the variance among wasps

within isolines (σ̂2 = 11.02). This pattern can be observed in Fig. 19.14,
with the observations for each isoline falling into discernable groups.

We can use the two variance components to estimate the heritability of
egg number, which is the proportion of the variance due to genotypic vs.
phenotypic differences among individuals (Falconer & Mackay 1996). The
genotypic variance, VG, is estimated by the variance among isolines within
sites, because each isoline represents a different genetic group. For the wasp
example, we have VG = σ̂2

isoline(site) = 10.17. The environmental variance, VE,
is estimated by the variance among individuals within isolines, and represents
variation among individuals not due to genotype. It is estimated by the
variance among wasps within isolines, or VE = σ̂2 = 11.02. The phenotypic
variance is defined as the sum of the genotypic and environmental variance,
or VP = VG + VE. Heritability is then defined h2 = VG/VP = VG/(VG + VE).
It follows that h2 = 10.17/(10.17 + 11.02) = 0.48 for the number of eggs in
the wasps. This is relatively large value, suggesting that egg number could
readily evolve in response to selection pressure.
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SAS program

* Nested_ANOVA_Anagrus.sas;

title "Nested ANOVA for fecundity";

title2 "Data simulated from Cronin and Strong (1996)";

data anagrus;

input site isoline wasp eggs;

* Apply transformations here;

y = eggs;

* Make jittered data for plots;

site_jit = site + 0.1*rannor(0);

datalines;

1 1 1 37

1 1 2 41

1 1 3 46

1 1 4 44

1 1 5 43

1 1 6 41

1 1 7 38

1 1 8 37

1 2 1 37

1 2 2 28

etc.

;

run;

* Print data set;

proc print data=anagrus;

run;

* Plot means and standard errors for each site;

proc gplot data=anagrus;

plot y*site=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1jmt v=none height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Plot observations for each site and isoline;

proc gplot data=anagrus;

plot y*site_jit=isoline / vaxis=axis1 haxis=axis1;

symbol1 i=none v=dot height=0.5;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Nested ANOVA mixed model;

proc mixed cl plots=residualpanel data=anagrus;

class site isoline;
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model y = site / ddfm=kr;

random isoline(site);

* Compare levels of fixed effect using Tukey’s HSD;

lsmeans site / diff=all adjust=tukey cl adjdfe=row;

run;

quit;

etc.

Figure 19.12: nested ANOVA Anagrus.sas - proc print
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Figure 19.13: nested ANOVA Anagrus.sas - proc gplot (1)

Figure 19.14: nested ANOVA Anagrus.sas - proc gplot (2)
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Figure 19.15: nested ANOVA Anagrus.sas - proc mixed
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Figure 19.16: nested ANOVA Anagrus.sas - proc mixed
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Figure 19.17: nested ANOVA Anagrus.sas - proc mixed
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19.3 Analysis of covariance

Analysis of covariance, or ANCOVA, is a design that combines elements of
ANOVA and regression. The simplest ANCOVA design is a combination
of one-way ANOVA and linear regression. The Factor A in the design is
typically a fixed effect, such as a treatment. For each observation Y in a
given treatment, a covariate X is also measured. This covariate is thought
to explain some level of variation in Y , and including it in the analysis could
increase the power to detect treatment effects. Y is often assumed to be
linearly related to X, although nonlinear relationships can be accomodated.
More generally, a study might involve a mixture of factors and covariates,
and the covariate effects may be of equal or greater interest than the factors.

As an example of ANCOVA, we will analyze a study of the fitness of
adult Thanasimus dubius, a bark beetle predator, reared on an artificial diet
vs. individuals collected from the wild (Reeve et al. 2003). The fitness
variables measured were the total number of eggs laid (fecundity) and elytral
length (Table 19.3). Body size and fecundity are often related in insects, so
elytral length was used as a covariate in the analysis. This helps control for
natural variation in body size to better see the treatment effect. The three
treatments in the study were (1) artificial diet as larvae and Ips grandicollis
(a bark beetle) as adults (DietIG), (2) artificial diet as larvae and cowpea
weevils (a substitute prey) as adults (DietCPW), and (3) wild adults fed cowpea
weevils (WildCPW). The wild adults were collected from the field and so reared
on natural prey as larvae. We will use the notation Yij to reference the
observations in ANCOVA designs, with the i subscript refering to the Factor
A or treatment group, while j is the observation within the treatment.
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Table 19.3: Example 3 - Fitness of the predator T. dubius, reared on an
artificial diet as larvae vs. wild individuals collected from the field (Reeve et
al. 2003). See Chapter 22 for the full data set.

Yij = Eggs Xij = Length (mm) Treatment i j
290 5.7 DietIG 1 1
99 5.2 DietIG 1 2

340 5.5 DietIG 1 3
271 4.8 DietIG 1 4
200 5.2 DietIG 1 5

etc.

66 4.6 DietCPW 2 1
93 5.0 DietCPW 2 2
9 5.4 DietCPW 2 3

404 5.4 DietCPW 2 4
244 5.1 DietCPW 2 5

etc.

62 4.7 WildCPW 3 1
290 5.0 WildCPW 3 2
488 5.8 WildCPW 3 3
336 5.2 WildCPW 3 4
337 5.8 WildCPW 3 5

etc.
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19.3.1 ANCOVA model

The following model is commonly used for simple ANCOVA designs (Winer
et al. 1991). We have

Yij = µ+ αi + β(Xij − X̄) + εij, (19.5)

where µ is the grand mean and αi is the deviation from µ caused by the ith
level of Factor A. The term Xij is the value of the covariate for observation
Yij, while X̄ is the average of all the covariate values. The parameter β is
the slope of the relationship between Yij and Xij. This slope is assumed to
be the same across all levels of Factor A. We will later see how to test this
assumption. As usual, the model assumes εij ∼ N(0, σ2).

The model can also be written in the form

Y ′ij = Yij − β(Xij − X̄) = µ+ αi + εij. (19.6)

Displayed this way, we can see that ANCOVA is equivalent to carrying out a
one-way ANOVA on values of Yij that have been adjusted for the covariate
X, namely the values of Y ′ij.

Another adjustment of the model is needed by SAS and other statistical
software. Combining some elements, the model can be written as

Yij = µ′ + αi + βXij + εij, (19.7)

where µ′ = µ−βX̄. The quantity µ′ represents a grand mean adjusted for the
effect of the covariate. The objective in ANCOVA is to test whether Factor
A and the covariate have an effect, and so test H0 : all αi = 0 and H0 : β = 0
with separate F tests. However, we will first need to test the assumption
that the slopes across Factor A levels are the same. This is accomplished by
adding a treatment × covariate interaction to the SAS model, which allows
each group to have a different slope. If the test for this effect is significant,
we would have a scenario similar to two-way ANOVA when interaction is
present (see Chapter 14). In particular, if the interaction is significant tests
of the main effects in ANCOVA (Factor A and the covariate X) may not
make sense.

19.3.2 ANCOVA for Example 3 - SAS demo

The first step in the analysis (see program below) is to plot the number of
eggs (y) for each treatment (treat) against elytral length, the covariate (x),
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using proc gplot (SAS Institute Inc. 2016). This gives some idea whether
each treatment group has the same slope, a key assumption of ANCOVA.
The slopes do appear to be similar (Fig. 19.19). We then fit the ANCOVA
model using proc glm, because all the effects in the model are fixed effects
(SAS Institute Inc. 2018). The first step is to fit a model with an interaction
between the treatment and covariate, and examine the test for the interaction
(Fig. 19.20). We see that it was non-significant (F2,35 = 0.02, P = 0.9781),
and so can assume the slopes are the same across treatments. We then rerun
the program using the model without interaction (Fig. 19.21). The covariate
effect was highly significant (F1,37 = 9.99, P = 0.0031), suggesting there is
a relationship between fecundity and body size. The treatment effect was
nonsigificant (F2,37 = 0.52, P = 0.5976), implying the treatments themselves
had no effect on egg numbers. Predators reared on the artificial diet were
apparently similar to wild predators on this measure of fitness, controlling
for elytral length and so body size. The proc glm output also includes a plot
of the fitted model and points (Fig. 19.22).

The program also includes an lsmeans statement to calculate the least
squares means for each treatment group, and test for differences among them
using the Tukey method. Least squares means are means adjusted for the
effect of other variables in the model, and in the case of ANCOVA are the
treatment means adjusted for the covariate. In particular, they have the
form

Ȳi(adj) = Ȳi − β̂(X̄i − ¯̄X). (19.8)

We can see they are composed of two terms, the treatment means and the
adjustment for the covariate. Treatment groups that have covariate means
(X̄i values) far from the overall covariate mean ( ¯̄X) receive a larger adjust-
ment. No significant differences were found among the treatment groups
(Fig. 19.23), which is not surprising given the overall treatment effect was
nonsignificant.
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SAS Program

* ANCOVA_fitness.sas;

title ’ANCOVA for T. dubius fitness’;

data fitness;

input eggs length treat $;

* Choose y and x variables;

y = eggs;

x = length;

datalines;

290 5.7 DietIG

99 5.2 DietIG

340 5.5 DietIG

271 4.8 DietIG

200 5.2 DietIG

etc.

;

run;

* Print data set;

proc print data=fitness;

run;

* Plot data and regression line;

proc gplot data=fitness;

plot y*x=treat / vaxis=axis1 haxis=axis1 legend=legend1;

symbol1 i=rl v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* ANCOVA;

proc glm plots=diagnostics data=fitness;

class treat;

* Model with interaction;

*model y = treat x treat*x;

* Model without interaction;

model y = treat x;

lsmeans treat / pdiff=all adjust=tukey cl lines;

run;

quit;
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etc.

Figure 19.18: ANCOVA fitness.sas - proc print

Figure 19.19: ANCOVA fitness.sas - proc gplot
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Figure 19.20: ANCOVA fitness.sas - proc glm (with interaction)
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Figure 19.21: ANCOVA fitness.sas - proc glm (without interaction)
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Figure 19.22: ANCOVA fitness.sas - proc glm (without interaction)

Figure 19.23: ANCOVA fitness.sas - proc glm (without interaction)
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19.5 Problems

1. A limnologist wants to examine the length of a zooplankton species
reared using four different algal growth media (1, 2, 3, and 4). She
is also interested in whether there is variation among the containers
used to rear the organisms. An experiment is conducted where three
containers are used for each rearing medium, for a total of 12 different
containers. The containers were randomly selected from a box of con-
tainers. The length of four animals was determined for each container,
yielding the following data:

Medium Container Lengths 1-4 (mm)
1 1 3.1, 3.0, 3.2, 3.0
1 2 3.3, 3.6, 2.8, 2.5
1 3 3.7, 3.4, 3.4, 3.6
2 1 2.7, 2.9, 3.2, 3.0
2 2 2.9, 3.4, 3.5, 2.9
2 3 3.5, 3.5, 3.7, 4.0
3 1 2.8, 2.7, 1.8, 2.5
3 2 2.6, 2.5, 3.2, 2.4
3 3 2.6, 2.9, 1.8, 2.4
4 1 4.1, 4.6, 3.3, 4.5
4 2 3.7, 3.9, 4.0, 3.9
4 3 4.4, 4.4, 3.9, 4.6

(a) Write an appropriate ANOVA model for this design, stating which
factors are fixed, random, and possibly nested.

(b) Use SAS to analyze these data using your ANOVA model, trans-
forming the observations only if necessary. Is there a significant
difference among the four media in zooplankton length?

(c) Use the Tukey method to compare the media treatments. Inter-
pret your results.

(d) Compare the magnitude of your variance components. Does there
appear to be much variation among containers?

2. An ecologist is interested in the effect of three management treatments
(labeled 1, 2, and 3) on the abundance of an endangered snail. Treat-
ment 2 is a control treatment. Twenty-four plots are established and
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the three treatments assigned at random to the plots. The density of
snails is then measured at a later time, as well as a covariate in the
form of a habitat index. Larger values of the habitat index are thought
to indicate better snail habitat. See data set below.

Treatment Index Snails
1 9.3 23.0
1 9.8 24.9
1 9.9 24.7
1 10.1 24.6
1 8.9 23.4
1 10.8 27.1
1 9.6 25.4
1 10.7 25.4
2 11.9 21.8
2 9.6 18.8
2 10.3 21.0
2 10.8 21.5
2 9.9 20.9
2 10.9 22.6
2 8.9 19.8
2 10.2 22.4
3 11.2 23.4
3 10.3 18.5
3 11.1 22.3
3 9.8 20.5
3 11.2 20.5
3 8.7 18.4
3 8.4 18.7
3 10.5 19.2

(a) Test for equality of slopes among the different treatment groups
using SAS. Is this key assumption of ANCOVA satisfied?

(b) Use ANCOVA and SAS to test for overall treatment and covariate
effects in this experiment, and the Tukey method to compare the
different treatments. Interpret and discuss your results. Is there
a significant treatment and covariate effect? How do the different
treatments compare?
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3. A scientist interested in aquaculture raises fish using three kinds of
treatments in a factorial design. There were two fish diets (A and B),
two strains of fish (1 and 2), and three temperatures (22o, 24o, and
26oC). Two fish were reared for each combination of the treatments.
The following data were obtained:

Diet Strain Temp Weight (lb)
A 1 22 5.5
A 1 22 5.8
A 1 24 5.9
A 1 24 5.7
A 1 26 6.2
A 1 26 5.9
A 2 22 5.2
A 2 22 5.0
A 2 24 5.4
A 2 24 5.6
A 2 26 5.0
A 2 26 4.9
B 1 22 5.4
B 1 22 4.8
B 1 24 5.4
B 1 24 5.4
B 1 26 5.7
B 1 26 5.5
B 2 22 5.2
B 2 22 4.8
B 2 24 5.1
B 2 24 5.1
B 2 26 4.8
B 2 26 4.5

(a) Write an appropriate ANOVA model for this design, stating which
factors are fixed or random.

(b) Use SAS to analyze these data using your ANOVA model, trans-
forming the observations only if necessary. Interpret the results of
your analysis.


