
Chapter 17

Linear Regression

Linear regression is a statistical method for examining the relationship be-
tween two continuous variables, typically called Y and X. It is usually as-
sumed there is a causal relationship between Y and X, with different values
of X causing changes in Y . For this reason, Y is often called the depen-
dent variable while X is the independent variable in the analysis. The
variable X is sometimes under the control of the investigator, similar to a
fixed effect in ANOVA, but can also be a random variable. For example, we
might be interested in the effect of temperature on the growth rate of fish.
Temperature might cause an increased growth rate, but clearly growth rate
cannot influence temperature. This causal relationship is a distinguishing
feature of regression as opposed to correlation analysis. Correlation is used
to examine the association between two continuous variables and no causal
direction is assumed (see Chapter 18). For example, we might be interested
in the relationship between fish length and weight but there is no obvious
causal relationship between the two variables.

Although linear regression assumes a different statistical model than ANOVA,
there are a number of similarities in the estimation process and statistical
tests for the two types. For example, both ANOVA and linear regression
models use likelihood methods for parameter estimation and test construc-
tion, and employ F statistics to test various hypotheses. Both are examples
of general linear models, in which the model parameters and error terms
enter the model in an additive (linear) fashion.

What do the data look like for linear regression? As an example, we
will use data from study on the southern pine beetle, Dendroctonus frontalis
(Reeve et al. 1998). The study used cages to experimentally manipulate the
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density of D. frontalis attacking pine trees. The independent or X variable in
the study was the number of beetles added to the cages, while the dependent
or Y variable was the number of attacks the beetles made through the bark
into the tree (Table 17.1). Besides establishing the relationship between the
two variables, there was also some interest in predicting the attack density
as a function of the number of beetles added to the cage, for use in future
studies. The notation Yi and Xi refers to the values for the ith pair of
numbers. For example, Y2 = 2.660 and X2 = 1.000. Fig. 17.2 shows there
is a positive relationship between the two variables, with attack density (Y )
increasing as more beetles are added to the cages (X).
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Table 17.1: Example 1 - Observations from an experiment in which different numbers of the bark beetle D.
frontalis were introduced into cages and the resulting attack density recorded (Reeve et al. 1998). Here Y
is the attack density (attacks per 100 cm2 of bark) while X is the number of beetles added (×103). Also
shown are some preliminary calculations for the regression analysis.

i Yi Xi (Xi − X̄)2 (Yi − Ȳ )(Xi − X̄) Ŷi = α̂ + β̂Xi Yi − Ŷi (Yi − Ŷi)2 (Ŷi − Ȳ )2 (Yi − Ȳ )2

1 1.250 0.100 0.740 2.779 2.206 -0.956 0.914 5.176 10.440
2 2.660 1.000 0.002 -0.073 4.586 -1.926 3.711 0.011 3.316
3 7.330 2.000 1.081 2.962 7.231 0.099 0.010 7.563 8.116
4 1.600 1.250 0.084 -0.835 5.248 -3.648 13.305 0.588 8.301
5 2.620 0.500 0.212 0.856 3.264 -0.644 0.415 1.481 3.464
6 1.000 0.200 0.578 2.646 2.471 -1.471 2.162 4.042 12.118
7 4.340 1.500 0.291 -0.076 5.909 -1.569 2.461 2.038 0.020
8 5.230 0.750 0.044 -0.157 3.925 1.305 1.702 0.309 0.561
9 2.500 0.250 0.504 1.407 2.603 -0.103 0.011 3.528 3.925

10 3.250 0.500 0.212 0.567 3.264 -0.014 0.000 1.481 1.516
11 6.000 2.000 1.081 1.579 7.231 -1.231 1.516 7.563 2.307
12 4.750 1.500 0.291 0.145 5.909 -1.159 1.343 2.038 0.072
13 2.500 0.250 0.504 1.407 2.603 -0.103 0.011 3.528 3.925
14 8.750 2.000 1.081 4.439 7.231 1.519 2.307 7.563 18.223
15 6.000 1.000 0.002 0.060 4.586 1.414 1.998 0.011 2.307
16 5.000 0.500 0.212 -0.239 3.264 1.736 3.014 1.481 0.269
17 7.150 1.000 0.002 0.106 4.586 2.564 6.572 0.011 7.123
18 6.750 1.500 0.291 1.225 5.909 0.841 0.708 2.038 5.158
19 7.500 1.500 0.291 1.630 5.909 1.591 2.532 2.038 9.114
20 2.500 0.500 0.212 0.912 3.264 -0.764 0.584 1.481 3.925
21 5.000 2.000 1.081 0.540 7.231 -2.231 4.979 7.563 0.269
22 2.250 0.250 0.504 1.585 2.603 -0.353 0.124 3.528 4.978
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i Yi Xi (Xi − X̄)2 (Yi − Ȳ )(Xi − X̄) Ŷi = α̂ + β̂Xi Yi − Ŷi (Yi − Ŷi)2 (Ŷi − Ȳ )2 (Yi − Ȳ )2

23 1.250 0.125 0.698 2.699 2.272 -1.022 1.045 4.879 10.440
24 4.750 1.000 0.002 0.011 4.586 0.164 0.027 0.011 0.072
25 4.500 0.250 0.504 -0.013 2.603 1.897 3.599 3.528 0.000
26 9.560 2.000 1.081 5.281 7.231 2.329 5.423 7.563 25.795
27 5.000 0.500 0.212 -0.239 3.264 1.736 3.014 1.481 0.269∑

11.798 31.203 63.486 82.528 146.014
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17.1 Linear regression model

Suppose that we want to model the observations in studies like Example 1,
where Y is observed for a number of X values. Let Yi and Xi stand for the
ith pair of values. The linear regression model takes the form

Yi = α + βXi + εi, (17.1)

where α is the intercept and β the slope of a line, while εi ∼ N(0, σ2) (Searle
1971). Thus, the linear regression model represents the relationship between
Yi and Xi as a line on which random deviations due to natural variability
(εi) are imposed.

For the ith pair of values, we have E[Yi] = α+βXi and V ar[Yi] = σ2 using
the rules for expected values and variances. Thus, Yi ∼ N(α + βXi, σ

2) for
any Xi value. The behavior of the linear regression model can be illustrated
by plotting this distribution across a range of Xi values . When β is positive,
the mean of Yi will increase as Xi increases (Fig. 17.1), while if β is negative
the mean would decrease (not shown). The variance remains the same for
all Xi. Note that the linear regression model has assumptions similar to the
ANOVA models – the observations are assumed be normal and have the same
variance.

The usual objectives in linear regression are to estimate the model param-
eters, especially the slope β, and then test whether the slope is different from
zero. In particular, we will be interested in testing H0 : β = 0. If a test of
this hypothesis is significant this suggests there is some relationship (positive
or negative) between Y and X. The alternative hypothesis can be written
as H1 : β 6= 0. It is also possible to test whether the intercept differs from
zero although this is less common. We will discuss how these parameters are
estimated and hypotheses tested in the next section.

17.2 Linear regression and likelihood

The maximum likelihood method can be used to estimate the parameters for
regression models, similar to ANOVA models. Suppose we have n observa-
tions conforming to the linear regression model

Yi = α + βXi + εi. (17.2)
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Figure 17.1: The linear regression model plotted across a range of X values,
with α = 2.0, β = 3.0, and σ2 = 2.5.

This model has three parameters to estimate, namely α, β, and σ2 (the
variance of εi). What would the likelihood function be for these data? Con-
sider the first observation in the D. frontalis cage experiment, for which
Y1 = 1.250 and X1 = 0.100. For this observation, the model states that
Y1 ∼ N(α + βX1, σ

2), and so the likelihood would be

L1 =
1√

2πσ2
e−

1
2

(Y1−(α+βX1))
2

σ2 =
1√

2πσ2
e−

1
2

(1.250−(α+β0.100))2

σ2 (17.3)

The likelihood Li for the ith observation would be similar, and the overall
likelihood is defined as their product:

L(α, β, σ2) = L1 × L2 × . . .× Ln. (17.4)

Finding the maximum likelihood estimates involves maximizing this quantity
with respect to the parameters α, β, and σ2. Using some calculus to find the
maximum, it can be shown that estimators of these parameters are

β̂ =

∑n
i=1(Yi − Ȳ )(Xi − X̄)∑n

i=1(Xi − X̄)2
, (17.5)

α̂ = Ȳ − β̂X̄ (17.6)
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and

σ̂2 =

∑n
i=1(Yi − (α̂ + β̂Xi))

2

n− 2
=

∑n
i=1(Yi − Ŷi)2

n− 2
. (17.7)

Here Ŷi = α̂ + β̂Xi, the value of Yi predicted by the model at Xi.
We can gain some insight into the estimation process by rearranging the

likelihood function. It can be written in the form

L(α, β, σ2) =

(
1√

2πσ2

)n
e−

1
2

∑n
i=1(Yi−(α+βXi))

2

σ2 . (17.8)

Now examine the terms in the sum, which are of the form (Yi− (α+ βXi))
2.

Values of α and β that minimize these terms will make the overall likelihood
larger, because of the negative sign in the exponent. The likelihood will
reach its maximum when this sum is smallest. Thus, values of α and β that
minimize

n∑
i=1

(Yi − (α + βXi))
2 (17.9)

are the maximum likelihood estimates. These estimates are also called least
squares estimates because they minimize the sum of these squared terms. In
fact, we could directly estimate α and β using this method without recourse
to likelihood (Searle 1971). The two methods yield the same results when
the data have a normal distribution.

A likelihood ratio test for linear regression can be constructed as follows.
Suppose we want to test H0 : β = 0 vs. H1 : β 6= 0, the latter implying a
linear relationship between Y and X. The statistical model under H0 would
be

Yi = α + βXi + εi (17.10)

= α + εi (17.11)

because β = 0 under H0. The statistical model under H1 would be the full
model including a slope term, namely

Yi = α + βXi + εi. (17.12)

We would need to find the maximum likelihood estimates under both H1 (see
previous section) and H0, as well as LH0 and LH1 , the maximum height of
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the likelihood function under H0 and H1. We would then use the likelihood
ratio test statistic

λ =
LH0

LH1

. (17.13)

There is a one-to-one correspondence between −2 ln(λ) and the statistic Fs
used to test this null hypothesis (McCulloch & Searle 2001).

We can gain further insight into this test by defining various sum of
squares and mean squares used to calculate Fs. In particular, we will define
SSerror, SSregression, and SStotal and their associated mean squares, which
have functions similar to those in ANOVA. We will also summarize the cal-
culations in an ANOVA table.

SSerror describes variation in the data around the regression line, or vari-
ation not explained by the model. It is defined as

SSerror =
n∑
i=1

(
Yi − (α̂ + β̂Xi)

)2

=
n∑
i=1

(Yi − Ŷi)2. (17.14)

SSerror has n− 2 degrees of freedom. We can therefore define

MSerror =
SSerror
n− 2

= σ̂2. (17.15)

Thus, MSerror is equivalent to σ̂2, the maximum likelihood estimate of σ2,
the same relationship as found in ANOVA. SSerror and MSerror will be small
if the data lie on a straight line and large if the data are scattered around
the line.

SSregression describes variation in the data explained by the regression
model. It is defined as

SSregression =
n∑
i=1

(Ŷi − Ȳ )2 (17.16)

and has one degree of freedom. We therefore have

MSregression =
SSregression

1
= SSregression. (17.17)

SSregression and MSregression will be large if the data have a strong positive or

negative slope. To see this, recall that Ŷi = α̂ + β̂Xi. If the estimated slope
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β̂ is large, the values of Ŷi will vary strongly as Xi changes and so generate
a large sum of squares.

The total sum of squares is defined (as in ANOVA) to be

SStotal =
n∑
i=1

(Yi − Ȳ )2 (17.18)

and has n−1 degrees of freedom. There is also a familiar relationship among
the different sums of squares, namely

SSregression + SSerror = SStotal. (17.19)

The likelihood ratio statistic used to test H0 : β = 0 is defined as

Fs =
MSregression
MSerror

. (17.20)

Under H0, Fs has an F distribution with df1 = 1 and df2 = n− 2 the degrees
of freedom. Given the definitions of MSregression and MSerror, we can see that
Fs tends to be large when the data have a strong slope (the numerator of this
expression) relative to the amount of scatter in the data (the denominator).

We can organize the different sum of squares and mean squares into an
ANOVA table for linear regression. It lists the different sources of variation
in the data (regression, error, and total), their degrees of freedom, as well as
the F test. Table 17.2 shows the general layout for linear regression.
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Table 17.2: General ANOVA table for linear regression, showing formulas for different mean squares and
the F test.

Source df Sum of squares Mean square Fs
Regression 1 SSregression MSregression = SSregression/1 MSregression/MSerror
Error n− 2 SSerror MSerror = SSwithin/(n− 2)
Total n− 1 SStotal

Table 17.3: ANOVA table for the Example 1 data set, including a P value for the test.

Source df Sum of squares Mean square Fs P
Regression 1 82.528 82.528 32.504 < 0.001
Error 25 63.486 2.539
Total 26 146.014
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17.2.1 Sample calculation - β̂, α̂, and F test

We will illustrate the above calculations using the Example 1 data set, where
Y is D. frontalis attack density and X is the number of beetles added to
the cage. We are interested in estimating the slope and intercept (β and α)
of the relationship between the two variables, and then testing whether the
slope is significantly different from zero (H0 : β = 0).

The first step is to calculate the sample mean for both Y and X, and
we obtain Ȳ = 4.481 and X̄ = 0.960. We then calculate (Xi − X̄)2 for each
value of Xi (see Table 17.1) and sum these values to obtain

n∑
i=1

(Xi − X̄)2 = 11.798. (17.21)

We then calculate the (Yi − Ȳ )(Xi − X̄) for each pair of numbers and sum
these to obtain

n∑
i=1

(Yi − Ȳ )(Xi − X̄) = 31.203. (17.22)

The estimate of β can then be calculated, and we find

β̂ =

∑n
i=1(Yi − Ȳ )(Xi − X̄)∑n

i=1(Xi − X̄)2
=

31.203

11.798
= 2.645. (17.23)

We can then estimate α using the formula

α̂ = Ȳ − β̂X̄ = 4.481− 2.645(0.960) = 1.942. (17.24)

The next step is to calculate the predicted values of Yi using the formula
Ŷi = α̂ + β̂Xi, for each value of Xi (see Table 17.1). We then calculate
Yi− Ŷi in another column, which contains the residuals for each observation.
Squaring and summing the residuals, we find

SSerror =
n∑
i=1

(Yi − Ŷi)2 = 63.486, (17.25)

and

MSerror =
SSerror
n− 2

=
63.486

27− 2
= 2.539. (17.26)
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We next calculate a column consisting of (Ŷi− Ȳ )2 for each observation, then
sum these values to obtain

SSregression =
n∑
i=1

(Ŷi − Ȳ )2 = 82.528, (17.27)

and so
MSregression = SSregression/1 = 82.528. (17.28)

We are now in a position to calculate Fs, the statistic used to test H0 :
β = 0. We have

Fs =
MSregression
MSerror

=
82.528

2.539
= 32.504. (17.29)

Under H0, Fs has an F distribution with df1 = 1 and df2 = 27 − 2 = 25
degrees of freedom. Using Table F, we find the P < 0.001. There is a highly
significant effect of beetles numbers on the attack density of D. frontalis
(F1,25 = 32.504, P < 0.001).

The last column in Table 17.1 calculates (Yi − Ȳ )2, the components of
SStotal. Summing these components we obtain SStotal = 146.014. It can also
be calculated using the formula SSregression + SSerror = SStotal. Table 17.3
shows the completed ANOVA table.

The observations for Example 1 and the fitted linear regression model
are shown in Fig. 17.2. The estimation procedure (maximum likelihood or
least squares) finds values of α and β that minimize the sum of the squared
differences between the data points and the line. In particular, it minimizes
the sum of the squared residuals, where the residuals are Yi− Ŷi = Yi− (α̂+
β̂Xi).
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Figure 17.2: Linear regression model fitted to the Example 1 data, where Y
is attack density and X is beetles added to the cages. The vertical dashed
line shows the residual Y4 − Ŷ4 = −3.648 for the i = 4 observation.
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17.3 Confidence and prediction intervals

In this section, we will examine confidence intervals for the parameters of the
regression model, and for the mean value of Yi at a given value of Xi. Like
other confidence intervals, they provide a measure of the accuracy or reliabil-
ity of an estimate, with wider intervals indicating lower accuracy (Chapter
9). Another type of interval for linear regression are prediction intervals.
These are used to set limits for future Yi values given some value of Xi. See
Draper & Smith (1981) for further details.

The confidence interval for the slope β is based on β̂, the maximum
likelihood estimate of β, and the standard error of this estimate sβ̂, given by
the formula

sβ̂ =

√
σ̂2∑n

i=1(Xi − X̄)2
, (17.30)

where σ̂2 = MSerror. Note that sβ̂ depends on the scatter of the data around

the line (σ̂2) as well as the amount of variability in Xi. A study using a
larger range of Xi values will thus provide a more accurate estimate
of β, because it reduces sβ̂. Increasing the sample size n would also
increase the accuracy, by increasing the sum of squares in the denominator
for sβ̂.

It can be shown that the quantity

β̂ − β
sβ̂

(17.31)

has a t distribution with n− 2 degrees of freedom, the same as for MSerror.
This fact can be used to derive a confidence interval for β. Using Table T, we
first find a value of cα,n−2 for n−2 degrees of freedom such that the following
equation is true:

P

[
−cα,n−2 <

β̂ − β
sβ̂

< cα,n−2

]
= 1− α. (17.32)

Rearranging this equation we obtain

P
[
β̂ − cα,n−2sβ̂ < β < β̂ + cα,n−2sβ̂

]
= 1− α. (17.33)

It follows that the interval

(β̂ − cα,n−2sβ̂, β̂ + cα,n−2sβ̂) (17.34)
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is a 100(1 − α)% confidence interval for β. The center of the confidence
interval would be β̂.

We may also want to test various null hypotheses concerning β. For
example, we may want to test H0 : β = β0 vs. H1 : β 6= β0, where β0 takes
some value of interest. Similar to the approach in Chapter 10, we would use
the test statistic

Ts =
β̂ − β0

sβ̂
. (17.35)

Under H0, Ts has a t distribution with n − 2 degrees of freedom, and we
would reject H0 for sufficiently large values of this statistic. For β0 = 0, this
test is equivalent to the F test we developed earlier for H0 : β = 0, and in
fact T 2

s = Fs. The t test is more general, however, because we can also test
H0 : β = β0 for any value of β0.

It is possible to derive similar t tests and confidence intervals for the
intercept parameter α. The t test is most commonly used to test H0 : α = 0.
If the test is significant this implies an intercept different from zero. We will
let SAS handle the calculations here.

We can also derive a confidence interval for the theoretical mean of Yi
at a given Xi value. Recall that according to the linear regression model,
E[Yi] = α+βXi. Thus, Yi has a mean of µ = α+βXi for any Xi value. The
confidence interval is based on Ŷi = α̂+ β̂Xi, the predicted value of Yi at Xi.
It also depends on the standard error sŶ of Ŷ , which is given by the formula

sŶ =

√
σ̂2

[
1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
. (17.36)

Note that the standard error sŶ depends on the value of (Xi − X̄)2, which
is the squared distance of Xi from X̄. The farther Xi is from X̄, the larger
the value of sŶ .

Using methods similar to the confidence interval for β, it can be shown
that a 100(1− α) confidence interval for µ = α + βXi has the form

(Ŷi − cα,n−2sŶ , Ŷi + cα,n−2sŶ ). (17.37)

The interval will be broader for values of Xi far from X̄ because sŶ will be
larger. In other words, the precision of the confidence interval decreases with
the distance from X̄.
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Another type of interval associated with regression are prediction in-
tervals. Here, we are trying to find an interval that contains a defined
percentage of future Yi values for a given value of Xi, hence the name pre-
diction interval. These are similar in form to the intervals for the theoretical
mean µ = α + βXi, but are always wider because you are trying to enclose
a single future observation rather than a mean value.

The prediction interval is based on Ŷi = α̂ + β̂Xi, the predicted value of
Yi at Xi, and the standard error sŶ (1) of Ŷi, which is given by the formula

sŶ (1) =

√
σ̂2

[
1 +

1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
. (17.38)

Note the additional term (1+) within the square brackets, which makes this
standard error larger than sŶ ). It also depends on the value of (Xi − X̄)2,
and so the farther Xi is from X̄, the larger the value of sŶ (1). It can be shown
that a 100(1− α) prediction interval for a single future Yi has the form

(Ŷi − cα,n−2sŶ (1), Ŷi + cα,n−2sŶ (1)). (17.39)

17.3.1 Sample calculation - confidence and prediction
intervals

We now illustrate the calculations for confidence intervals using the Example
1 data. We earlier found that β̂ = 2.645 and α̂ = 1.942. To find a confidence
interval for β, we first need to calculate sβ̂. From Table 17.1, we see that∑n

i=1(Xi − X̄)2 = 11.798, and we earlier calculated that σ̂2 = MSerror =
2.539. Inserting these quantities into the formula for sβ̂, we find

sβ̂ =

√
σ̂2∑n

i=1(Xi − X̄)2
=

√
2.539

11.798
= 0.464. (17.40)

For a 95% confidence interval and α = 0.05, the confidence interval for β has
the form

(β̂ − c0.05,n−2sβ̂, β̂ + c0.05,n−2sβ̂) (17.41)

From Table T, with α = 0.05 and df = n − 2 = 27 − 2 = 25, we find that
c0.05,25 = 2.060. Inserting this value, β̂ = 2.645, and sβ̂ = 0.464 in this
formula, we obtain

(2.645− 2.060(0.464), 2.645 + 2.060(0.464)) (17.42)
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or
(1.689, 3.601). (17.43)

We next find a confidence interval for the theoretical mean µ = α + βXi

at Xi = 0.5. For this value of Xi, we have

Ŷi = α̂ + β̂Xi = 1.942 + 2.645(0.5) = 3.265. (17.44)

From Table 17.1 we have
∑n

i=1(Xi − X̄)2 = 11.798, and earlier found that
X̄ = 0.960 and σ̂2 = MSerror = 2.539. Inserting these quantities into the
formula for sŶ , we find that

sŶ =

√
σ̂2

[
1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
(17.45)

=

√
2.539

[
1

27
+

(0.5− 0.960)2

11.798

]
(17.46)

=

√
2.539

[
0.037 +

0.212

11.798

]
(17.47)

= 0.374. (17.48)

For a 95% confidence interval and α = 0.05, the confidence interval for the
theoretical mean µ = α + βXi has the form

(Ŷ − c0.05,n−2sŶ , Ŷ + c0.05,n−2sŶ ) (17.49)

From Table T with α = 0.05 and df = n − 2 = 27 − 2 = 25, we find that
c0.05,25 = 2.060. Inserting this value, Ŷ = 3.265, and sŶ = 0.374 in this
formula, we find

(3.265− 2.060(0.374), 3.265 + 2.060(0.374)) (17.50)

or
(2.495, 4.035). (17.51)

Lastly, we calculate a prediction interval for a single future observation
Yi at Xi = 0.5. For this value of Xi, we earlier calculated that

Ŷi = α̂ + β̂Xi = 1.942 + 2.645(0.5) = 3.265. (17.52)
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We again have
∑n

i=1(Xi − X̄)2 = 11.798, X̄ = 0.960 and σ̂2 = MSerror =
2.539. Inserting these quantities into the formula for sŶ (1), we obtain

sŶ (1) =

√
σ̂2

[
1 +

1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
(17.53)

=

√
2.539

[
1 +

1

27
+

(0.5− 0.960)2

11.798

]
(17.54)

=

√
2.539

[
1 + 0.037 +

0.212

11.798

]
(17.55)

= 1.637. (17.56)

For a 95% prediction interval and α = 0.05, the interval has the form

(Ŷ − c0.05,n−2sŶ (1), Ŷ + c0.05,n−2sŶ (1)) (17.57)

From Table T with we have c0.05,25 = 2.060. Inserting c0.05,25 = 2.060, Ŷ =
3.265, and sŶ (1) = 1.637 in this formula, we obtain

(3.265− 2.060(1.637), 3.265 + 2.060(1.637)) (17.58)

or
(−0.107, 6.637). (17.59)

Note this interval is much wider than the interval for the theoretical mean
µ = α + βXi, which was (2.495, 4.035). This is because you are trying
to enclose a single future observation, a random variable Yi, rather than a
theoretical mean.

17.4 R2 values

R2 values are a measure of how well a statistical model explains the data.
Recall that the following relationship holds among the sum of squares in
linear regression:

SSregression + SSerror = SStotal. (17.60)

We can think of the different sum of squares as partitioning the variability in
the data into different sources. SSregression represents variability explained by
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the regression line, SSerror represents variability of the observations around
the regression line, while SStotal is the total amount of variability in the
data. The R2 value for a linear regression model is the proportion of total
variability explained by the model, or

R2 =
SSregression
SStotal

=
SSregression

SSregression + SSerror
. (17.61)

It is clear from this formula that R2 must range between 0 and 1 (0 ≤ R2 ≤
1). For the Example 1 data, we have

R2 = 82.528/146.014 = 0.565. (17.62)

Thus, 56.5% of the variation is explained by the regression model for these
data. Small R2 values indicate there is substantial variability in the data not
explained by the model, while large ones indicate the model explains most
of the variation.

More generally, we can define an R2 value for both ANOVA and regression
models as

R2 =
SSmodel
SStotal

=
SSmodel

SSmodel + SSerror
. (17.63)

For example, we have SSmodel = SSamong for one-way ANOVA while SSerror =
SSwithin. The R2 value here is the proportion of the variation explained by
the one-way ANOVA model, in particular the variation among the group
means. The SAS output for proc glm provides an R2 for ANOVA models of
this form.

17.5 Linear regression for Example 1 - SAS

demo

The linear regression analysis can be conducted using proc glm and a program
similar in structure to ANOVA ones (see SAS program and output below).
We first input the observations using a data step, applying transformations if
necessary. The dependent variable Y is defined as the SAS variable y, while
the independent variable X is defined as x. It is important to realize
that the actual names of these variables are not important - it
is their position in proc gplot and proc glm that determines which
one is the dependent variable, and which is the independent one.
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The dependent variable always goes first. Note also the additional
observation at end of the data set, for which x = 0.5 but y is a missing value.
The purpose of this observation is to make proc glm calculate a confidence
interval for the mean, as well as a prediction interval, at that particular value
of x.

The data are then plotted along with the fitted line plus confidence and
prediction intervals. This accomplished using the following proc gplot code
(SAS Institute Inc. 2014a). The three y*x statements in the plot command
plot the same data in three different ways, which are then combined into one
graph using the overlay option. The first plot, using the symbol1 command,
draws the data points. The second plot, using the symbol2 command, draws
a regression line through the points and also plots 95% confidence intervals
for the mean of Yi at Xi, or µ = α+ βXi, across the range of Xi values. The
third plot, using the symbol3 command, plots 95% prediction intervals for a
single future observation, again across the range of Xi values.

The regression analysis is conducted using proc glm as shown below (SAS
Institute Inc. 2014b). There is no class statement because the independent
variable X is a continuous variable and does not fall into discrete groups like
ANOVA. Note the similarity of the model statement to the linear regression
model. The option clparm is used to generate 95% confidence intervals for α
and β, while clm generates a 95% confidence interval for the mean of Yi at
each value of Xi. If we want prediction intervals it is necessary to run proc glm

a second time using the cli option in the model statement (see below). This
is necessary because proc glm cannot generate both types of intervals at the
same time.

The data points, regression line, and confidence or prediction intervals
are shown in Fig. 17.3. The prediction intervals are much wider than the
confidence intervals, because the prediction intervals are for single future Yi
while the confidence intervals enclose a mean. Note that both types of inter-
val increase in width as you move away from the center of the X values. This
follows from the fact that the standard errors involved in these calculations
are a function of (Xi − X̄)2, which increases as Xi moves away from X̄.

Examining the output for proc glm, first note that the slope β is labeled
as x while the intercept α is Intercept. We see that attack density y increases
with beetle numbers x, because β̂ = 2.645 and is positive. The effect of beetle
numbers on attack density was highly significant (F1,25 = 32.5, P < 0.0001).
There are several F tests to chose from in the output, but all give the same
result for simple linear regression. Alternately, we could report the t test for
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β (t25 = 5.70, P < 0.0001), which also tests H0 : β = 0. We see that R2 =
0.565, indicating that 56.5% of the variation is explained by the regression
model.

The proc glm output also provides 95% confidence intervals for α and β.
A 95% confidence interval for the mean of Yi at Xi = 0.5 is also given, and
labeled as 95% Confidence Limits for Mean Predicted Value. The second set of
output for proc glm contains a 95% prediction interval for a single future Yi at
Xi = 0.5, labeled as 95% Confidence Limits for Individual Predicted Value.

Note that the estimated intercept is some distance from zero (α̂ = 1.942),
and in fact the t test of H0 : α = 0 reported by SAS is highly significant
(t25 = 3.59, P = 0.0014). This cannot really be true because the addition of
zero beetles should give you an attack density of zero. A more accurate (and
possibly non-linear) model would require that the intercept be zero.

This is a potential pitfall when using linear regression. Many biological
phenomenon are approximately linear over some range of the data but the
approximation breaks down for more extreme values. A linear regression
does not take this possibility into account and so cannot provide a general
explanation of some phenomena.
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Figure 17.3: Linear regression model fitted to the Example 1 data, where Y
is attack density and X is beetles added to the cages. Also shown are 95%
confidence intervals for the mean, and prediction intervals for a single future
observation.
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SAS Program

* SPBattack.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Linear regression for D. frontalis attack density’;

data frontalis;

input attacks beetles;

* Apply transformations here;

y = attacks;

x = beetles;

datalines;

1.25 0.100

2.66 1.000

7.33 2.000

1.60 1.250

2.62 0.500

etc.

5.00 0.500

. 0.500

;

run;

* Print data set;

proc print data=frontalis;

run;

* Plot data and regression line;

proc gplot data=frontalis;

plot y*x y*x y*x / overlay vaxis=axis1 haxis=axis1;

symbol1 i=none v=star c=black height=2 width=3;

symbol2 i=rlclm v=none c=red height=2 width=3;

symbol3 i=rlcli v=none c=blue height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Regression analysis with confidence intervals;

proc glm data=frontalis;

model y = x / clparm clm;

output out=resids p=pred r=resid;

run;

* Regression analysis with prediction intervals;

proc glm data=frontalis;

model y = x / clparm cli;

run;

goptions reset=all;
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title "Diagnostic plots to check ANOVA assumptions";

* Plot residuals vs. predicted values;

proc gplot data=resids;

plot resid*pred=1 / vaxis=axis1 haxis=axis1;

symbol1 v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Normal quantile plot of residuals;

proc univariate noprint data=resids;

qqplot resid / normal waxis=3 height=4;

run;

quit;
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SAS Output

Linear regression for D. frontalis attack density 1

08:45 Sunday, November 14, 2010

Obs attacks beetles y x

1 1.25 0.100 1.25 0.100

2 2.66 1.000 2.66 1.000

3 7.33 2.000 7.33 2.000

4 1.60 1.250 1.60 1.250

5 2.62 0.500 2.62 0.500

etc.

27 5.00 0.500 5.00 0.500

28 . 0.500 . 0.500

Linear regression for D. frontalis attack density 2

08:45 Sunday, November 14, 2010

The GLM Procedure

Number of Observations Read 28

Number of Observations Used 27

Linear regression for D. frontalis attack density 3

08:45 Sunday, November 14, 2010

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 1 82.5283492 82.5283492 32.50 <.0001

Error 25 63.4855174 2.5394207

Corrected Total 26 146.0138667
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R-Square Coeff Var Root MSE y Mean

0.565209 35.56163 1.593556 4.481111

Source DF Type I SS Mean Square F Value Pr > F

x 1 82.52834922 82.52834922 32.50 <.0001

Source DF Type III SS Mean Square F Value Pr > F

x 1 82.52834922 82.52834922 32.50 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 1.941567811 0.54083158 3.59 0.0014

x 2.644847410 0.46394486 5.70 <.0001

Parameter 95% Confidence Limits

Intercept 0.827704323 3.055431300

x 1.689335080 3.600359740

Linear regression for D. frontalis attack density 4

08:45 Sunday, November 14, 2010

The GLM Procedure

Observation Observed Predicted Residual

1 1.25000000 2.20605255 -0.95605255

2 2.66000000 4.58641522 -1.92641522

3 7.33000000 7.23126263 0.09873737

4 1.60000000 5.24762707 -3.64762707

5 2.62000000 3.26399152 -0.64399152

etc.

27 5.00000000 3.26399152 1.73600848

28 * . 3.26399152 .
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95% Confidence Limits for

Observation Mean Predicted Value

1 1.16947580 3.24262930

2 3.95365127 5.21917917

3 6.05393677 8.40858849

4 4.55796883 5.93728532

5 2.49438766 4.03359537

etc.

27 2.49438766 4.03359537

28 * 2.49438766 4.03359537

* Observation was not used in this analysis

Sum of Residuals -0.00000000

Sum of Squared Residuals 63.48551745

Sum of Squared Residuals - Error SS 0.00000000

PRESS Statistic 73.72506348

First Order Autocorrelation 0.45535896

Durbin-Watson D 1.02741345

etc.

Linear regression for D. frontalis attack density 8

08:45 Sunday, November 14, 2010

The GLM Procedure

Observation Observed Predicted Residual

1 1.25000000 2.20605255 -0.95605255

2 2.66000000 4.58641522 -1.92641522

3 7.33000000 7.23126263 0.09873737

4 1.60000000 5.24762707 -3.64762707

5 2.62000000 3.26399152 -0.64399152

etc.
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27 5.00000000 3.26399152 1.73600848

28 * . 3.26399152 .

95% Confidence Limits for

Observation Individual Predicted Value

1 -1.23574200 5.64784710

2 1.24398368 7.92884676

3 3.74449413 10.71803113

4 1.89395940 8.60129475

5 -0.10702442 6.63500745

etc.

27 -0.10702442 6.63500745

28 * -0.10702442 6.63500745

* Observation was not used in this analysis

Sum of Residuals -0.00000000

Sum of Squared Residuals 63.48551745

Sum of Squared Residuals - Error SS 0.00000000

PRESS Statistic 73.72506348

First Order Autocorrelation 0.45535896

Durbin-Watson D 1.02741345
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Figure 17.4: Residual vs. predicted plot for the Example 1 analysis.

Figure 17.5: Normal quantile plot for the Example 1 analysis.
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17.6 Assumptions and transformations

Linear regression makes the same assumptions as ANOVA, includ-
ing homogeneity of variances and normality, and the same types
of plots can be used to assess them. If the homogeneity of variances
assumption is satisfied, the points in a residual vs. predicted plot should
be equally scattered across the range of predicted values. Outliers can also
be identified using this plot. The normality assumption can be evaluated
using a normal quantile plot of the residuals, with a straight diagonal line
indicating this assumption is satisfied.

Examining the residuals from the Example 1 analysis, we see no obvious
pattern in the residual vs. predicted plot, suggesting the homogeneity of
variances assumption is satisfied (Fig. 17.4). No outliers were present. The
normal quantile plot suggests the normality assumption is satisfied (Fig.
17.5).

Linear regression makes another key assumption, namely that
the relationship between Y and X is linear. This assumption can be
checked by examining a plot of Y vs. X as well as the residual vs. predicted
plot (see examples below). What can be done if the relationship seems non-
linear? We can sometimes fix this problem by applying a transformation to
Y , X, or both Y and X, so that linear regression can be applied to the trans-
formed data. This use of transformations greatly extends the utility
of linear regression. Some commonly used transformations are log Y vs.
X, log Y vs. logX, Y vs. logX, and 1/Y vs. X. A transformation that
linearizes the data sometimes corrects for problems with the homogeneity of
variances and normality assumptions.

A transformation may be selected based on prior information about the
data and system. For example, a conservation biologist may be interested
in the relationship between island area A and the number of species S on
the island, and previous studies suggest the relationship between log10 S and
log10A will be linear (MacArthur & Wilson 1967). Another approach is to
try a number of transformations and chose the one that makes the data most
linear. We will illustrate each approach with an example below.

In cases where no transformation can linearize the data, another possi-
bility would be nonlinear regression (Juliano 1993). This type of analysis
requires that the user specify a model Y = f(X, θ1, θ2, . . .) + ε for the data,
where f is a function with parameters θ1, θ2, . . . to be estimated. SAS imple-
ments this type of nonlinear regression in proc nlin, while proc nlmixed allows
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for nonlinear functions as well as random effects and nonnormal distributions.

17.6.1 Species-area data - SAS demo

For many organisms there is a relationship between a defined area of habitat,
such as an island, and the number of species found there. If S is the number
of species, and A the area of habitat, then the model S = cAz seems to
describe many data sets (MacArthur & Wilson 1967). Taking the log10 of
both sides of this equation, we obtain

log10 S = log10 c+ z log10A. (17.64)

This form of the model is linear and suggests linear regression could be used
to analyze species-area data. The SAS program listed below shows how
these transformations can be applied to the bird fauna on archipelagos and
islands of varying areas. The data are the number of species vs. island area
(square miles) for 23 islands. The data were simulated to resemble Fig. 9
in MacArthur & Wilson (1967). An extra observation is included with a
missing value for the number of species, but an island area of 5000 square
miles, to make proc glm calculate a confidence interval for the mean of this
island.

We first conduct the analysis without any transformation and examine
the gplot graph of Y vs. X, where Y is the number of species and X is island
area (Fig. 17.6). Note the nonlinear nature of the relationship between the
number of species and island area. This pattern is also reflected in the
residual vs. predicted plot (Fig. 17.7), which appears to be hump-shaped.
Both plots suggest that a transformation is required for these data in order
to linearize the relationship between the two variables.

The picture improves after a log10 transformation is applied to both
species and area. We see that the graph of the transformed variables is
linear (Fig. 17.8) and residual vs. predicted plot is featureless (Fig. 17.9).
The normal quantile plot is also well-behaved (Fig. 17.10). Now that the
various assumptions are satisfied we can interpret the rest of the SAS output
(see below). We see that the number of species increases with island area
(β̂ = 0.241) and the effect is highly significant (F1,21 = 148.16, P < 0.0001).

In terms of the original model, where S = cAz, we see that β̂ = 0.241 is
also an estimate of z. The R2 value is 0.876, indicating that 87.6% of the
variation is explained by the regression model. Confidence intervals are also
provided for the intercept and slope.
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The proc glm output also generates a predicted value Ŷi = 1.800 at Xi =
3.699 (log10 5000 = 3.699). We need to convert this to the original scale

measurement using antilogs. We have Ŝi = 10Ŷi = 101.800 = 63.10 species.
So, we predict there would be 63 species on an island of 5000 square miles.
The confidence interval for the mean is (1.746, 1.855), which we can similarly
convert to (101.745, 101.855) or (55.72, 71.61).
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SAS Program

* SAprob2.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Linear regression for species-area data’;

data sa;

input species area;

* Apply transformations here;

y = log10(species);

x = log10(area);

datalines;

15 28

104 113480

165 380358

116 33252

35 1010

33 305

78 37620

93 4762

50 213

76 2976

18 23

28 186

20 423

121 108512

53 364

22 269

102 11163

28 487

158 445409

19 70

111 38309

152 100873

55 1354

. 5000

;

run;

* Print data set;

proc print data=sa;

run;

* Plot data and regression line;

proc gplot data=sa;

plot y*x=1 y*x=2 y*x=3 / overlay vaxis=axis1 haxis=axis1;

symbol1 i=none v=star c=black height=2 width=3;
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symbol2 i=rlclm v=none c=red height=2 width=3;

symbol3 i=rlcli v=none c=blue height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Regression analysis with confidence intervals;

proc glm data=sa;

model y = x / clparm clm;

output out=resids p=pred r=resid;

run;

* Regression analysis with prediction intervals;

proc glm data=sa;

model y = x / clparm cli;

run;

goptions reset=all;

title "Diagnostic plots to check ANOVA assumptions";

* Plot residuals vs. predicted values;

proc gplot data=resids;

plot resid*pred=1 / vaxis=axis1 haxis=axis1;

symbol1 v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Normal quantile plot of residuals;

proc univariate noprint data=resids;

qqplot resid / normal waxis=3 height=4;

run;

quit;



17.6. ASSUMPTIONS AND TRANSFORMATIONS 563

Figure 17.6: Linear regression model fitted to the species-area data, where
Y is the number of species and X is island area.

Figure 17.7: Residual vs. predicted plot for the species-area data.
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Figure 17.8: Linear regression model fitted to the species-area data, where
Y is log-transformed species and X is log-transformed area.
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Figure 17.9: Residual vs. predicted plot for the log-transformed species-area
data.

Figure 17.10: Normal quantile plot for the log-transformed species-area data.
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SAS Output

Linear regression for species-area data 1

11:32 Tuesday, November 16, 2010

Obs species area y x

1 15 28 1.17609 1.44716

2 104 113480 2.01703 5.05492

3 165 380358 2.21748 5.58019

4 116 33252 2.06446 4.52182

5 35 1010 1.54407 3.00432

etc.

23 55 1354 1.74036 3.13162

24 . 5000 . 3.69897

Linear regression for species-area data 2

11:32 Tuesday, November 16, 2010

The GLM Procedure

Number of Observations Read 24

Number of Observations Used 23

Linear regression for species-area data 3

11:32 Tuesday, November 16, 2010

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 1 2.25182542 2.25182542 148.16 <.0001

Error 21 0.31916133 0.01519816

Corrected Total 22 2.57098675
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R-Square Coeff Var Root MSE y Mean

0.875860 7.083042 0.123281 1.740507

Source DF Type I SS Mean Square F Value Pr > F

x 1 2.25182542 2.25182542 148.16 <.0001

Source DF Type III SS Mean Square F Value Pr > F

x 1 2.25182542 2.25182542 148.16 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 0.9102215097 0.07289411 12.49 <.0001

x 0.2405722961 0.01976395 12.17 <.0001

Parameter 95% Confidence Limits

Intercept 0.7586299190 1.0618131004

x 0.1994709127 0.2816736795

Linear regression for species-area data 4

11:32 Tuesday, November 16, 2010

The GLM Procedure

Observation Observed Predicted Residual

1 1.17609126 1.25836764 -0.08227638

2 2.01703334 2.12629506 -0.10926172

3 2.21748394 2.25266125 -0.03517730

4 2.06445799 1.99804559 0.06641240

5 1.54406804 1.63297800 -0.08890996

etc.

23 1.74036269 1.66360220 0.07676049

24 * . 1.80009122 .
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95% Confidence Limits for

Observation Mean Predicted Value

1 1.16016869 1.35656659

2 2.04142998 2.21116013

3 2.15012264 2.35519985

4 1.92880841 2.06728278

5 1.57645124 1.68950477

etc.

23 1.60855303 1.71865138

24 * 1.74567238 1.85451005

* Observation was not used in this analysis

Sum of Residuals -0.00000000

Sum of Squared Residuals 0.31916133

Sum of Squared Residuals - Error SS 0.00000000

PRESS Statistic 0.36922092

First Order Autocorrelation 0.04242134

Durbin-Watson D 1.87548592

etc.
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17.6.2 Population growth rates - SAS demo

As another example of transformations, consider a study of the population
growth of phytophagous mites on leaf sections. An experiment is conducted
in which leaf sections are inoculated with a range of mite densities and the
number of offspring recorded one generation later. The number of offspring
per initial mite is the finite growth of the population, usually symbolized as
λ. The SAS program listed below gives the mite densities and the λ values
for this experiment.

We first conduct the analysis without any transformation. Looking at
the plot of Y (λ) vs. X (density), we see a curvilinear relationship (Fig.
17.11) that also appears in the residual vs. predicted plot (Fig. 17.12). A
transformation is clearly needed, but which one? A natural log transforma-
tion usually a good starting point for population data, both for growth rates
and numbers. We begin by log-tranforming the dependent variable λ and
examining the plots (see program below). The graph after transformation is
linear (Fig. 17.13) and the residual vs. predicted plot shows no pattern (Fig.
17.14). The normal quantile plot is also adequate (Fig. 17.15).

Interpreting the SAS output (see below), we see that λ decreases with mite
density (β̂ = −0.020) and the effect is highly significant (F1,15 = 1695.22, P <
0.0001). The R2 value is 0.991, indicating that almost all the variation in the
data is explained by the regression line. It appears that the growth rate of
the mites is adversely affected by their density, probably through competition
for resources or other intraspecific interactions.
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SAS Program

* logistic.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Linear regression for growth rate-density data’;

data grd;

input lambda density;

* Apply transformations here;

y = log(lambda);

x = density;

datalines;

7.32 5

4.82 15

4.69 25

3.90 35

2.65 45

2.52 55

1.70 65

1.68 75

1.43 85

1.07 95

0.74 105

0.72 115

0.64 125

0.47 135

0.40 145

0.38 155

0.25 165

;

run;

* Print data set;

proc print data=grd;

run;

* Plot data and regression line;

proc gplot data=grd;

plot y*x=1 y*x=2 y*x=3 / overlay vaxis=axis1 haxis=axis1;

symbol1 i=none v=star c=black height=2 width=3;

symbol2 i=rlclm v=none c=red height=2 width=3;

symbol3 i=rlcli v=none c=blue height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Regression analysis with confidence intervals;

proc glm data=grd;

model y = x / clparm clm;
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output out=resids p=pred r=resid;

run;

* Regression analysis with prediction intervals;

proc glm data=grd;

model y = x / clparm cli;

run;

goptions reset=all;

title "Diagnostic plots to check ANOVA assumptions";

* Plot residuals vs. predicted values;

proc gplot data=resids;

plot resid*pred=1 / vaxis=axis1 haxis=axis1;

symbol1 v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Normal quantile plot of residuals;

proc univariate noprint data=resids;

qqplot resid / normal waxis=3 height=4;

run;

quit;
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Figure 17.11: Linear regression model fitted to the λ-density data, where Y
is λ and X is initial mite density.

Figure 17.12: Residual vs. predicted plot for the λ-density data.
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Figure 17.13: Linear regression model fitted to the λ-density data, where Y
is log λ and X is initial mite density.

Figure 17.14: Residual vs. predicted plot for the transformed λ-density data.
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Figure 17.15: Normal quantile plot for the transformed λ-density data.
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SAS Output

Linear regression for growth rate-density data 1

18:39 Tuesday, November 16, 2010

Obs lambda density y x

1 7.32 5 1.99061 5

2 4.82 15 1.57277 15

3 4.69 25 1.54543 25

4 3.90 35 1.36098 35

5 2.65 45 0.97456 45

etc.

Linear regression for growth rate-density data 2

18:39 Tuesday, November 16, 2010

The GLM Procedure

Number of Observations Read 17

Number of Observations Used 17

Linear regression for growth rate-density data 3

18:39 Tuesday, November 16, 2010

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 1 16.36176928 16.36176928 1695.22 <.0001

Error 15 0.14477544 0.00965170

Corrected Total 16 16.50654472

R-Square Coeff Var Root MSE y Mean

0.991229 35.21791 0.098243 0.278958
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Source DF Type I SS Mean Square F Value Pr > F

x 1 16.36176928 16.36176928 1695.22 <.0001

Source DF Type III SS Mean Square F Value Pr > F

x 1 16.36176928 16.36176928 1695.22 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 1.981131688 0.04771689 41.52 <.0001

x -0.020025578 0.00048638 -41.17 <.0001

Parameter 95% Confidence Limits

Intercept 1.879425551 2.082837825

x -0.021062263 -0.018988893

Linear regression for growth rate-density data 4

18:39 Tuesday, November 16, 2010

The GLM Procedure

Observation Observed Predicted Residual

1 1.99061033 1.88100380 0.10960653

2 1.57277393 1.68074802 -0.10797410

3 1.54543258 1.48049225 0.06494033

4 1.36097655 1.28023647 0.08074008

5 0.97455964 1.07998070 -0.10542106

etc.

95% Confidence Limits for

Observation Mean Predicted Value

1 1.78375413 1.97825347

2 1.59217362 1.76932242

3 1.40019098 1.56079352
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4 1.20766853 1.35280442

5 1.01441498 1.14554641

etc.

Linear regression for growth rate-density data 5

18:39 Tuesday, November 16, 2010

The GLM Procedure

Sum of Residuals -0.00000000

Sum of Squared Residuals 0.14477544

Sum of Squared Residuals - Error SS -0.00000000

PRESS Statistic 0.18945485

First Order Autocorrelation -0.31722141

Durbin-Watson D 2.52386773

etc.
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17.7 Problems

1. An experiment was conducted to measure the effect of density on the
rate of egg laying in cowpea weevils. Ten different densities were used in
the experiment, and the rate of egg laying determined for each density.
The following data were obtained:

Density Eggs per day
100 7.629
200 4.530
500 3.820
700 2.718

1200 2.403
1500 1.756
1700 1.772
2000 1.508
2200 1.518
2500 1.359

(a) Plot the rate of egg laying (Y ) vs. density (X), and observe the
nonlinear relationship between Y and X. Find a transformation
of Y and/or X that linearizes this relationship using SAS.

(b) For the transformed data, use SAS to plot a 95% confidence inter-
val for the mean of Yi and a 95% prediction interval for a single
value of Yi. Label the intervals (confidence or prediction) on the
gplot graph.

(c) Analyze the transformed data set using linear regression and SAS.
In your SAS output, label the 95% confidence intervals for the
intercept (α) and slope (β) in your SAS printout.

(d) Interpret the results of the regression analysis. Is there a sig-
nificant effect of density on the rate of egg production? What
direction is the effect?

2. A zoologist wants to establish the relationship between the length of
an animal and its weight. He wants to use length to predict weight in
future studies, because length is easier to measure. The lengths and
weights of a random sample of 20 animals were determined, yielding
the following data:
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Length (mm) Weight (g)
14.7 1.65
19.9 4.86
15.8 2.04
19.0 3.53
8.4 0.32

10.2 0.46
13.5 1.68
22.1 6.24
16.2 1.85
8.2 0.28

10.1 0.48
19.8 4.18
20.6 4.77
22.0 6.10
18.1 2.78
22.4 5.26
10.5 0.55
14.5 1.56
11.9 1.07
14.7 1.74

(a) Plot the weight (Y ) vs. length (X) using SAS, and observe the
nonlinear rela-tionship between Y and X. Attach your graph of
this relationship. Then, find a transformation of Y and/or X
that linearizes this relationship using SAS or R. What transfor-
mation did you use? Attach your graph showing the transformed
relationship.

(b) Analyze the transformed data using linear regression and SAS.
Briefly interpret your results using P values. Is there a significant
effect of length on weight? What direction is the effect? Attach
your program and output.

(c) For animals that are 21 mm long, find a 95% confidence interval
for the mean weight.
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