
Chapter 15

Assumptions and
Transformations

Analysis of variance as well as regression analysis (see Chapter 17) make a
number of assumptions about the nature of the observations. These assump-
tions are embodied in the statistical model used in the analysis. For example,
recall the model for fixed effects one-way ANOVA:

Yij = µ+ αi + εij. (15.1)

Here µ is the grand mean while αi is the deviation from µ caused by the ith
level of Factor A. The εij term represents random departures from the mean
value predicted by Factor A due to natural variability. It is assumed that
εij ∼ N(0, σ2) and that these random variables are also independent of one
another. We examine these assumptions in more detail below and discuss
how their violation can affect the validity of the statistical analyses. We
then describe how variance-stabilizing transformations are used to fix
certain violations of these assumptions. We also present a common method
for identifying these violations known as residual analysis.

15.1 ANOVA assumptions

15.1.1 Independence of observations

One key assumption embodied in the above model is that the error terms
εij are independent, implying that the observations Yij are also independent.

469



470 CHAPTER 15. ASSUMPTIONS AND TRANSFORMATIONS

How would a lack of independence influence the results of ANOVA? The
consensus is that a lack of independence can greatly influence the validity of
ANOVA, including the Type I error rate and power of the F test, as well as
the estimation of group effects (Glass et al. 1972).

As an example of an experimental design where the observations are not
independent, suppose that we conduct an insect trapping experiment with
two bait types, A and B. We place all of the bait A traps in one location
and bait B ones in a second location. If location influences the abundance
of insects, then we would expect the trap catches at a particular location to
be high or low for this reason, separate of any treatment effect. Thus, the
observations at a particular location are related to one another and so are not
independent. We would be more likely to find a treatment effect if these data
were analyzed using one-way ANOVA, because of the location effect on insect
abundance, even if there was no effect of bait type on trap catches. Thus, the
Type I error rate of the F test would be higher. This combination of poor
experimental design and an inappropriate statistical analysis has been called
pseudoreplication (Hurlbert 1984). While there are multiple traps within
each location, they are not true replicates because the observations are not
independent, and treatment and location effects cannot be separated. This
design basically has only one replicate per treatment, one for each location.

Fortunately, the assumption of independence will usually be satisfied by
good experimental design and execution (Hurlbert 1984). In the insect bait
experiment, a better experimental design would randomly allocate bait types
to traps at both locations, and the analysis could also include a location
(block) effect in the statistical model. Randomization also helps ensure that
estimates of the treatment effects are unbiased. For example, bait type A
might be messier to use than B, and the experimenter might be tempted to
do those replicates last or place them in a different location. This poten-
tial source of bias by the experimenter is avoided by randomization of the
treatments.

15.1.2 Homogeneity of variances

Another key assumption of ANOVA is that the variance is similar among
treatment groups, also known as the homogeneity of variances assumption
or homoscedasticity. This follows from the assumption that εij has a
variance of σ2 regardless of the treatment group. We can also see this from a
graphical presentation of the one-way ANOVA model, where each treatment
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group has the same distribution with the same variance except for shifts due
to Factor A (see Fig. 11.1 in Chapter 11). The condition of unequal variances
is also called heteroscedasticity.

If the homogeneity of variances assumption is not satisfied this can strongly
affect the validity of the F test in ANOVA, especially when the design is un-
balanced (Glass et al. 1972). If the treatments with higher variances have
smaller sample sizes, then the actual Type I error rate will be higher than its
nominal value (say α = 0.05). Conversely, if the treatments with higher vari-
ances have larger sample sizes, the actual Type I error rate will be smaller
than its nominal value. We will see later in this chapter how variance-
stabilizing transformations can be used to equalize the variance among
groups, making the observations better conform to this assumption.

15.1.3 Normality

A further assumption of ANOVA is that the error term εij is normally dis-
tributed, and as a consequence so are the observations (Yij values). The
assumption of normality appears to be less important for the validity of
ANOVA than homogeneity of variances. Many studies indicate that the
ANOVA F test has the nominal Type I error rate (α = 0.05) even when
the observations have distributions quite different from the normal, although
power may be increased or decreased relative to the normal (see Table 16,
Glass et al. 1972). For large values of n per group, ANOVA is likely to be a
valid procedure regardless of the distribution of the observations due to the
central limit theorem (Chapter 7). In practice, a transformation that equal-
izes the variance among groups also seems to normalize the observations,
solving both problems.

15.1.4 Absence of outliers

An assumption of ANOVA related to normality is the absence of outliers.
Outliers are observations that lie far from the other observations
in a particular study. The source of the outlier could be a rare biological
event, or simply a data entry error or bad measurement with an instrument.
Because it lies far from the other observations, an outlier will increase the
size of MSwithin and alter the estimated effect of its treatment group. If
the outlier is a data error then there is justification for deleting it from the
observations. If the source is unclear or the outlier is a valid observation, then
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one common approach is to conduct the statistical analysis with and without
the outlier and present both results. Outliers can be often be identified using
residual analysis (see below).

15.1.5 Additivity

ANOVA models are known as additive models because the observations are
modeled as the sum of several factors. For example, the model for two-way
fixed effects ANOVA without replication is

Yij = µ+ αi + βj + εij. (15.2)

Thus, the Yij values are modeled as the sum of the grand mean, the effects
of Factor A and B, and a random term representing variability among the
observations. Additivity of effects is a basic assumption of ANOVA.

However, some biological processes like survival and reproduction are
inherently multiplicative processes. For example, suppose our observations
are the number of offspring surviving to maturity from a single female. This
number will be the product of the fecundity of the female and the survival
rate of the offspring. We now apply a number of treatments that could
potentially influence both these factors. The resulting observations could be
described using the model

Yij = λsifjγij, (15.3)

where λ is the average number of offspring surviving to maturity, while si
and fj are the differential effects of the survival and fecundity treatments.
The term γij is a multiplicative error term with a distribution that takes only
positive values, and it is typically required that E[γij] = 1. Note that these
must all be positive quantities in order for the number of offspring (Yij) to
be positive.

Can data of this type be analyzed using ANOVA? The answer is yes,
because we can use a log transformation to make the data additive. Taking
the log of both sides of this model, we obtain

log Yij = log λ+ log si + log fj + log γij. (15.4)

The result is an additive model the same as for unreplicated two-way ANOVA,
and the data can be analyzed using standard ANOVA methods. This is one
reason why studies of reproduction and survival as well as population dy-
namics routinely use the log transformation.
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15.2 Variance-stabilizing transformations

Variance-stabilizing transformations are often used by statisticians to equal-
ize the variance of observations across different treatment groups, so that the
homogeneity of variances assumption is better satisfied. We have already em-
ployed these transformations in some of our analyses, including the log and
arcsine-square root transformations.

The different transformations are derived as follows. Suppose we have a
random variable Y that describes the data, and there is a functional rela-
tionship between its variance V ar[Y ] = v and its mean E[Y ] = m. More
specifically, suppose that we have

v = f(m) (15.5)

where f is some function. For example, with the Poisson distribution for
parameter λ we have V ar[Y ] = E[Y ] = λ (Chapter 7), and so v = m is the
functional relationship. It can then be shown that a function g that satisfies
the equation

g(m) =

∫
θdm√
f(m)

, (15.6)

where θ is a constant, will be a variance-stabilizing transformation (Bartlett
1947). To see how this process works, suppose that a random variable Y has
a Poisson distribution. We find that

g(m) =

∫
θdm√
m

= θ
m1/2

1/2
+ C = 2θ

√
m+ C ∝

√
m. (15.7)

Thus, the variance-stabilizing transformation for Poisson data is
√
Y .

As another example, suppose that v = m2 so that the variance increases
with the square of the mean. Negative binomial data will have this form for
large m, because v = m + m2/k for this distribution (Chapter 7). For this
relationship between v and m, we have

g(m) =

∫
θdm√
m2

=

∫
θdm

m
= θ logm+ C ∝ logm, (15.8)

implying that log Y is the variance-stabilizing transformation. Either natural
or base 10 log transformations can be used and will yield identical test results.
The log Y transformation is a ‘stronger’ transformation than the

√
Y because

it corrects for a stronger relationship between v and m.
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A variance-stabilizing transformation is also needed for proportions, be-
cause the variance of a proportion depends on its mean. To see this, suppose
that we observe l different individuals from some population and record their
sex. Let Y be the number of individuals in the sample that are female. The
variable Y would be a binomial random variable with parameters l and p,
where p is the proportion of females in the population, and so E[Y ] = lp
and V ar[Y ] = lp(1 − p) (see Chapter 5). Then, a binomial proportion
would be Y/l, the proportion of females in the sample. For this proportion,
we have E[Y/l] = lp/l = p while V ar[Y/l] = lp(1 − p)/l2 = p(1 − p)/l. If
we set m = p, then v = V ar[Y/l] = m(1 − m)/l and so v is a function of
m. Using the same method as above, we find that the variance-stabilizing
transformation for binomial proportions is sin−1(

√
Y ) or arcsin(

√
Y ). This

transformations maps proportions from 0 to 1 to the interval 0 to π/2. The
largest effect of the transformation is on proportions close to 0 or 1.

Table 15.1 lists the commonly used variance-stabilizing transformations.
Also listed are variants of the transformations that are useful when the data
include zeroes, as often occurs in count data. In the next section, we will
illustrate the use of these transformations, and how the appropriate trans-
formation can be determined through residual analysis.

Table 15.1: Variance-stabilizing transformations for various v = f(m) and
the data for which they are useful.

v = f(m) Transformation Comments

v = m
√
Y ,
√
Y + 1/2 (zeroes) Poisson data

v = m2 log Y, log(Y + 1) (zeroes) Overdispersed count data,
many other types

v = m(1−m)/l arcsin
√
Y Proportions

15.3 Residual analysis

We will present the details of residual analysis in this section. We begin by
defining predicted and residual values using one-way ANOVA as an example,
for both fixed and random effects (similar results hold for more complex de-
signs). We then illustrate residual analysis and the use of variance-stabilizing
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transformations with some examples.

15.3.1 Models, estimates, and predictors

ANOVA is based on statistical models that contain a number of parameters.
For example, the statistical model for fixed effects one-way ANOVA has the
form

Yij = µ+ αi + εij, (15.9)

where µ is the grand mean, αi is the deviation from the µ caused by the
ith treatment, and εij ∼ N(0, σ2). We saw earlier how likelihood methods
could be used to estimate the parameters µ, αi, and σ2 for this model. For
the random effects version, the model contained a random variable Ai ∼
N(0, σ2

A), and is written as

Yij = µ+ Ai + εij. (15.10)

The parameters in this model are µ, σ2
A, and σ2, and these quantities can

also be estimated using likelihood methods. It is also possible to estimate the
random variable Ai itself, more specifically the value realized in a particular
group and study. Estimators of Ai are often called predictors in this con-
text, because they concern random variables rather than model parameters
(Searle et al. 1992).

15.3.2 Predicted and residual values

We can use these estimates to generate a predicted value for each observa-
tion Yij in the data set. For the fixed effects model listed above, the predicted

value of Yij is Ŷij = µ̂ + α̂i, where µ̂ and α̂i are the estimated values of µ
and αi. Note that all observations in the ith group would have the same
predicted value.

What actually are the predicted values here? Recall that for the fixed
effects model, the maximum likelihood estimates of these parameters are

µ̂ = ¯̄Y (15.11)

and
α̂i = Ȳi· − ¯̄Y. (15.12)

Thus,
Ŷij = µ̂+ α̂i = ¯̄Y + Ȳi· − ¯̄Y = Ȳi·. (15.13)
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So, the predicted value for the ith group is just the mean of that group.
Similarly, for the random effects model the predicted value of Yij is Ŷij =

µ̂+ Âi, where µ̂ = ¯̄Y and Âi is the predictor of Ai. It turns out that the best
predictor for the realized value of Ai is ‘shrunk’ relative to αi and has the
form

Âi =
σ2
A

σ2
A + σ2/n

(Ȳi· − ¯̄Y ) (15.14)

(Searle et al. 1992). It depends on σ2
A and σ2 as well as Ȳi· and ¯̄Y . It follows

that

Ŷij = µ̂+ Âi = ¯̄Y +
σ2
A

σ2
A + σ2/n

(Ȳi· − ¯̄Y ) (15.15)

for the random effects model. Thus, Ŷij is not equal to Ȳi· in this situation

but lies closer to the grand mean ¯̄Y , unless n is large. In practice, estimates
of the two variance components are used to generate the predicted value.

In assessing the validity of our statistical models, we will also be interested
in the residuals of the observations, which are defined as the difference
Yij − Ŷij. The residuals essentially provide an estimate of the error term εij
for each observation, which we can call ε̂ij. Why is this so? The model for
one-way ANOVA can be expressed as

Yij − (µ+ αi) = εij. (15.16)

If we insert estimates for µ and αi in this equation, we obtain an estimate of
εij:

Yij − (µ̂+ α̂i) = Yij − Ŷi = ε̂ij. (15.17)

There is an interesting relationship between these residual values and
MSwithin. Suppose that we use the sample variance of the ε̂ij values to
estimate the variance of εij, namely σ2. The sum of squares associated with
this sample variance is

SS =
a∑
i=1

n∑
j=1

(ε̂ij)
2 =

a∑
i=1

n∑
j=1

(Yij − (µ̂+ α̂i))
2 , (15.18)

and the degrees of freedom are a(n − 1). Dividing SS by its degrees of
freedom, we obtain an estimator of σ2 based on the residuals:

σ̂2 =

∑a
i=1

∑n
j=1 (Yij − (µ̂+ α̂i))

2

a(n− 1)
. (15.19)
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How is this quantity related to MSwithin, our other estimate of σ2? If we
plug µ̂ = ¯̄Y and α̂i = Ȳi· − ¯̄Y into this equation, we obtain

σ̂2 =

∑a
i=1

∑n
j=1

(
Yij − ( ¯̄Y + Ȳi· − ¯̄Y )

)2

a(n− 1)
(15.20)

=

∑a
i=1

∑n
j=1

(
Yij − Ȳi·)

)2

a(n− 1)
(15.21)

= MSwithin. (15.22)

Thus, MSwithin can be expressed in terms of the residuals from the ANOVA
estimation process. This relationship is true for all ANOVA models (and
regression as well). Because MSwithin can be expressed using the residual
or error terms, MSwithin is also called MSresidual or MSerror, and SSwithin
similarly named SSresidual or SSerror. This terminology is used in SAS output
as well.

It is also possible to express MSamong in terms of the maximum likelihood

estimates of the parameters. Because α̂i = Ȳi· − ¯̄Y , we have

MSamong =
n
∑a

i=1(Ȳi· − ¯̄Y )2

a− 1
=
n
∑a

i=1 α̂
2
i

a− 1
. (15.23)

From this result, it is clear that MSamong is an increasing function of the
values of α̂i, the estimated treatment effects (Winer et al. 1991).

15.3.3 Evaluating ANOVA assumptions

Residuals play a key role in determining if a particular data set satisfies the
assumptions of ANOVA. They can be used to evaluate three of the assump-
tions: (1) homogeneity of variances among groups, (2) absence of outliers,
and (3) normality of the error terms.

We can evaluate the homogeneity of variances assumption through a plot
of the residuals vs. predicted values. If the variances are homoge-
neous among groups, the points should be equally scattered for
each group. This is because the residuals are estimates of the εij values
and are supposed to have the same variance across groups. If the residual vs.
predicted plot shows a definite pattern, such as a increase or decrease in the
scatter as the predicted values increase, this suggests a variance-stabilizing



478 CHAPTER 15. ASSUMPTIONS AND TRANSFORMATIONS

transformation may be needed. This type of plot is also useful for detecting
any outliers in the data. If an outlier is present it will have a very
large residual value. The normality assumption can be evaluated using a
normal quantile plot of the residuals. If the residuals are normal, then
this plot will be a straight diagonal line.

15.3.4 Residual analysis and transformations - SAS
demo

We will illustrate residual analysis and the use of transformations with data
from a trapping study of the predatory insect Thanasiumus dubius (Reeve
et al. 2009). This study used a randomized block design with five bait
treatments and six blocks, previously analyzed in Chapter 14. Note that the
model for this design contains both fixed and random effects, but predicted
values and residuals can still be generated through a more complex process
(Searle et al. 1992)

The complete program for this example is listed below for reference. We
will concentrate here on the steps necessary to generate a residual vs. pre-
dicted plot, and a normal quantile plot, in order to examine the homogeneity
of variances and normality assumptions. The outp=resids option in the model

statement sends the residual and predicted values for each observation to an
output data file called resids (SAS Institute Inc. 2014). They are given the
names resid and pred in this file. The subsequent proc gplot portion of the
program plots the residuals vs. predicted values, with residuals on the y-axis
and predicted values on the x -axis. A normal quantile plot of the residuals
is generated using proc univariate.

We first analyze the data using no transformation by setting y = count in
the data step. Examining the residual vs. predicted plot, we see an increase
in the scatter of the residuals as the predicted values increase (Fig. 15.1),
especially for the largest predicted values. This implies that the variance
of the observations increases with their mean (v is some function of m). In
addition, the normal quantile plot does not appear to be a straight diagonal
line (Fig. 15.2). Neither assumption appears to be satisfied in this analysis.

We next analyze the data using a square root transformation by setting
y = sqrtcount in the data step. The residual vs. predicted plot shows less
scatter of the residuals for larger predicted values, although there is still
some spread (Fig. 15.3). The normal quantile plot is now a straight diagonal
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line (Fig. 15.4).
We next try a log transformation of the data, setting y = logcount in the

data step. The residual vs. predicted plot shows the same scatter across
the range of predicted values (Fig. 15.5), and the normal quantile plot is
a straight diagonal line (Fig. 15.6). This is the desired outcome with the
data now satisfying the homogeneity of variances and normality assumptions.
There also appear to be no outliers (extreme residual values) in these obser-
vations. We can then proceed to interpret the rest of the analysis,
such as the F test and multiple comparisons. They should be valid
at this point because the ANOVA assumptions are satisfied. See
Chapter 14 for the interpretation of this analysis.
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SAS Program

* TrapRCBD_clerids.sas;

options pageno=1 linesize=80;

goptions reset=all;

title "Randomized block anova for trapping experiment data";

data trapexp;

input block $ treat $ count;

* Apply transformations here;

sqrtcount = sqrt(count);

logcount = log(count+1);

* Choose which variable is used for plots and anova;

y = logcount;

* Delete blank traps;

if treat="BLANK" then delete;

datalines;

1 AP 4

1 BLANK 0

1 FRAP 79

1 IDAP 7

1 ISAP 10

2 AP 1

2 BLANK 0

2 FRAP 124

2 IDAP 13

2 ISAP 20

3 AP 0

3 BLANK 0

3 FRAP 14

3 IDAP .

3 ISAP 2

4 AP 0

4 BLANK 0

4 FRAP 15

4 IDAP 11

4 ISAP 7

5 AP 0

5 BLANK 0

5 FRAP 29

5 IDAP 7

5 ISAP 7

6 AP 2

6 BLANK 0

6 FRAP 70

6 IDAP 14
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6 ISAP 20

;

run;

* Print data set;

proc print data=trapexp;

run;

* Plot means, standard errors, and observations;

proc gplot data=trapexp;

plot y*treat=block / vaxis=axis1 haxis=axis1;

symbol1 i=j v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Mixed model analysis;

proc mixed cl data=trapexp;

class treat block;

model y = treat / ddfm=kr outp=resids;

random block;

lsmeans treat / pdiff=all adjust=tukey;

run;

goptions reset=all;

title "Diagnostic plots to check anova assumptions";

* Plot residuals vs. predicted values;

proc gplot data=resids;

plot resid*pred=1 / vaxis=axis1 haxis=axis1;

symbol1 v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Normal quantile plot of residuals;

proc univariate noprint data=resids;

qqplot resid / normal waxis=3 height=4;

run;

quit;
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Figure 15.1: Residual vs. predicted plot for a trapping experiment with no
transformation of the data.

Figure 15.2: Normal quantile plot of the residuals for a trapping experiment
with no transformation of the data.
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Figure 15.3: Residual vs. predicted plot for a trapping experiment with a√
Y transformation of the data.

Figure 15.4: Normal quantile plot of the residuals for a trapping experiment
with a

√
Y transformation of the data.
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Figure 15.5: Residual vs. predicted plot for a trapping experiment with a
log Y transformation of the data.

Figure 15.6: Normal quantile plot of the residuals for a trapping experiment
with a log Y transformation of the data.
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15.3.5 arcsin(
√
Y ) transformation - SAS demo

As another example of residual analysis and transformation, we will analyze
the observations from an experiment involving an insect predator and the
survival of a pest insect on which it feeds. Plots are established each con-
taining 20 pest insects, and a predator treatment (0, 10, or 20 predators)
randomly assigned to each plot. There were n = 10 plots per predator treat-
ment. The proportion of pest insects surviving was determined for each plot.
See SAS program below.

We first analyze these data using untransformed proportions, using y = prop

in the data step, where prop is the proportion of surviving pest insects. A
one-way ANOVA is then conducted using proc glm with predator as the treat-
ment (a fixed effect). Examining the residual vs. predicted plot (Fig. 15.7),
we see that the variability of the observations for one treatment is smaller.
This is the 0 predator treatment and has a very high survival rate. The nor-
mal quantile plot is a straight diagonal line, so this assumption is apparently
satisfied (Fig. 15.8).

We then analyze the experiment using the transformation arcsin(
√
Y )

where Y is the proportion, using y = arsin(sqrt(prop)) in the data step. The
residual vs. predicted plot shows an equal scatter of the residuals across
the predicted values, suggesting the homogeneity of variances assumption is
satisfied (Fig. 15.9). The normal quantile plot is a straight diagonal line
once more (Fig. 15.10). What has happened here? The transformation has
spread out the survival rates for the 0 predator treatment, thus equalizing
the variances among the treatment groups.

Examining the SAS output, we see there was a highly significant effect
of the predator treatment on the survival rate of the pest insect (F2,27 =
21.26, P < 0.0001). Pest survival decreased as the number of predators
increased (Fig. 15.11).
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SAS Program

* arcsine.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’One-way ANOVA for proportions’;

data arcsine;

input predators survivors;

prop = survivors/20;

* Apply transformations here;

y = arsin(sqrt(prop));

datalines;

0 18

0 18

0 18

0 16

0 19

0 19

0 17

0 18

0 20

0 17

1 14

1 17

1 15

1 10

1 17

1 14

1 13

1 17

1 14

1 15

2 12

2 16

2 16

2 12

2 6

2 12

2 13

2 10

2 9

2 10

;

run;

* Print data set;
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proc print data=arcsine;

run;

* Plot means, standard errors, and observations;

proc gplot data=arcsine;

plot y*predators=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* One-way anova with all fixed effects;

proc glm data=arcsine;

class predators;

model y = predators;

output out=resids p=pred r=resid;

run;

goptions reset=all;

title "Diagnostic plots to check ANOVA assumptions";

* Plot residuals vs. predicted values;

proc gplot data=resids;

plot resid*pred=1 / vaxis=axis1 haxis=axis1;

symbol1 v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Normal quantile plot of residuals;

proc univariate noprint data=resids;

qqplot resid / normal waxis=3 height=4;

run;

quit;
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Figure 15.7: Residual vs. predicted plot for a predation experiment with no
transformation of the data.

Figure 15.8: Normal quantile plot of the residuals for a predation experiment
with no transformation of the data.
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Figure 15.9: Residual vs. predicted plot for a predation experiment with a
arcsin(

√
Y ) transformation of the data.

Figure 15.10: Normal quantile plot of the residuals for a predation experiment
with a arcsin(

√
Y ) transformation of the data.
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SAS Output

One-way ANOVA for proportions 1

13:58 Monday, November 9, 2015

Obs predators survivors prop y

1 0 18 0.90 1.24905

2 0 18 0.90 1.24905

3 0 18 0.90 1.24905

4 0 16 0.80 1.10715

5 0 19 0.95 1.34528

6 0 19 0.95 1.34528

7 0 17 0.85 1.17310

8 0 18 0.90 1.24905

9 0 20 1.00 1.57080

10 0 17 0.85 1.17310

11 1 14 0.70 0.99116

12 1 17 0.85 1.17310

13 1 15 0.75 1.04720

14 1 10 0.50 0.78540

15 1 17 0.85 1.17310

16 1 14 0.70 0.99116

17 1 13 0.65 0.93774

18 1 17 0.85 1.17310

19 1 14 0.70 0.99116

20 1 15 0.75 1.04720

21 2 12 0.60 0.88608

22 2 16 0.80 1.10715

23 2 16 0.80 1.10715

24 2 12 0.60 0.88608

25 2 6 0.30 0.57964

26 2 12 0.60 0.88608

27 2 13 0.65 0.93774

28 2 10 0.50 0.78540

29 2 9 0.45 0.73531

30 2 10 0.50 0.78540

One-way ANOVA for proportions 2

13:58 Monday, November 9, 2015

The GLM Procedure

Class Level Information
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Class Levels Values

predators 3 0 1 2

Number of Observations Read 30

Number of Observations Used 30

One-way ANOVA for proportions 3

13:58 Monday, November 9, 2015

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 0.81626150 0.40813075 21.26 <.0001

Error 27 0.51834395 0.01919792

Corrected Total 29 1.33460544

R-Square Coeff Var Root MSE y Mean

0.611613 13.10549 0.138557 1.057240

Source DF Type I SS Mean Square F Value Pr > F

predators 2 0.81626150 0.40813075 21.26 <.0001

Source DF Type III SS Mean Square F Value Pr > F

predators 2 0.81626150 0.40813075 21.26 <.0001
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Figure 15.11: Transformed survival rates vs. predator treatment.

15.3.6 Transformations when data are limited

In many real studies, we will have insufficent data to determine the appropri-
ate variance-stabilizing transformation using residual analysis. For example,
we may not have enough points to determine if the variance is related to
the mean, or whether the normality assumption is satisfied. In this situa-
tion you may have to guess the appropriate transformation. For count data
you would use the

√
Y or log Y transformation. Most count data are more

overdispersed or clumped than the Poisson distribution, however, and so the
log Y transformation will usually be a better choice than

√
Y . You would

use the arcsin(
√
Y ) transformation for proportion data, especially if there

are some proportions near 0 or 1.
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