
Chapter 13

Multiple Comparisons

One-way ANOVA, as well as more complex variants, provides a test of an
overall null hypothesis of the form H0 : αi = 0 for all i vs. H1 : some αi 6= 0.
If we obtain a small P value for this test, it provides evidence against H0

and in favor of H1. However, this overall test provides little information on
whether particular groups are different. We now turn to statistical methods
designed to compare pairs of groups for one-way ANOVA designs. These
procedures allow comparisons to be made among all possible pairs of groups,
or sometimes one group vs. all others, and are collectively called multiple
comparisons. Although multiple comparisons are often conducted in asso-
ciation with ANOVA, they are in fact stand-alone procedures (Hsu 1996).
There is no need to conduct an ANOVA before using these procedures, al-
though SAS will generate an overall F test regardless. Moreover, significant
differences between groups in multiple comparisons may not coincide with a
significant overall F test, or vice versa.

13.1 Models for multiple comparisons

The statistical model for multiple comparisons is basically the one-way ANOVA
model expressed in a different form. The one-way ANOVA model is

Yij = µ+ αi + εij, (13.1)

where µ is the grand mean, αi is the deviation from the grand mean caused
by the ith group, and εij ∼ N(0, σ2). For multiple comparison procedures it
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344 CHAPTER 13. MULTIPLE COMPARISONS

is common to define µi = µ+ αi, and so the one-way model becomes

Yij = µi + εij. (13.2)

We can think of µi as the mean of the ith group, where there are a total
groups.

Now consider two groups i and j in a study which have means µi and µj,
where i 6= j. We will be interested in estimating the difference in the means
of these two groups, µi− µj, and finding a confidence interval to accompany
this estimate for all possible pairs of groups. We will also be interested in
testing whether the means of the two groups are equal, namely H0 : µi = µj
or equivalently H0 : µi − µj = 0, again for all possible pairs of groups. For a
study with a groups, this amounts to a(a−1)/2 pairs of groups. For example,
if there are a = 3 groups there are 3(3 − 1)/2 = 3 possible pairwise com-
parisons (groups 1-2, 2-3, and 1-3). There are multiple comparison methods
that provide estimates, confidence intervals, and tests, while others provide
only tests but have more statistical power. The basic purpose of these pro-
cedures is to statistically test which pairs of treatments are different, and
provide some idea of the magnitude of the difference. We will examine three
procedures in this category, known as all possible pairwise comparisons.
The procedures are called Fisher’s least significant difference, the Tukey pro-
cedure, and the Ryan-Einot-Gabriel-Welsch (REGW) procedure (Hsu 1996).

For experiments that have a clearly identifiable control group, it may be
appropriate to compare each group with only the control. For example, sup-
pose the control is a standard drug treatment for a disease. We may only
be interested in treatments that give a significantly better (or maybe worse)
result compared to the control, and are not interested in other comparisons
among the treatments. For a study with a groups including the control, this
amounts to a− 1 pairs of groups with the control. For example, if there are
a = 3 groups with the first group (i = 1) the control, there are 3 − 1 = 2
possible comparisons (groups 1-2 and 1-3). We will examine Dunnett’s pro-
cedure in this category, known as multiple comparisons with a control
(Hsu 1996).

13.2 Error rates in multiple comparisons

There are two error rates commonly used to describe multiple comparison
procedures. One is the per comparison error rate, which is the Type I
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error rate for a single test comparing a single pair of groups. This rate is like
that used in other statistical tests we have encountered, where only a single
test is considered. The second is the experimentwise error rate, or EER.
The EER is defined as the probability of one or more Type I errors
(rejecting H0 when it is true) in a set of comparisons.

Why do we need two error rates? Multiple comparison procedures such
as the ones mentioned above can involve a substantial number of statistical
tests, one test for each pair of groups. For example, with a = 5 groups
there would be 5(5 − 1)/2 = 10 possible pairwise comparisons, while for
a = 10 groups we would have 10(10 − 1)/2 = 45 comparisons! Given this
many comparisons and tests, it is quite possible that some pairs would yield
a significant test result even if the null hypothesis were true, i.e., we would
reject H0 : µi = µj for one or more pairs of groups, even though there is no
difference between the groups. For example, suppose that the per comparison
error rate is set at the typical α = 0.05 value, which amounts to a 1 in 20
chance of rejecting H0 when it is true. Given a = 10 and 45 total tests,
we would expect to see a few significant test results just by chance. This
difficulty has been called the multiplicity problem (Westfall et al. 1999).

To see the magnitude of the multiplicity problem, we can plot the EER for
the least significant difference procedure, which controls the per comparison
error rate but not the EER. Fig. 13.1 shows a plot of the EER vs. the number
of groups or treatments (a). The least significant difference procedure is
a t test that compares the means for each pair of groups, with each test
conducted at the same α level, in this case α = 0.05. We see that the EER,
and the number of pairwise comparisons, increases rapidly with the number of
groups. Thus, it becomes more likely that any significant differences reported
among groups are in fact Type I errors. In contrast, methods designed to
control the EER, such as the Tukey procedure, would maintain an EER of
0.05 regardless of the number of groups. These tests manage the EER by
essentially reducing the per comparison error rate for each test. The penalty
of controlling the EER is a loss of power to detect differences among
groups where they do exist.

Multiple comparison procedures have been the subject of considerable
controversy in the ecological and statistical literature. Several tests you
may encounter in the literature, such as least significant difference, Fisher’s
protected least significant difference, Duncan’s multiple range test, and the
Student-Newman-Keuls test, were very popular because they gave significant
results more often than competing methods. Unfortunately, these particular
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Figure 13.1: Plot of the experimentwise error rate vs. a, the number of
treatments or groups, using α = 0.05 for each comparison. Also shown is the
number of pairwise comparisons (k = a(a− 1)/2) vs. a.

tests do not control the experimentwise error rate (Day & Quinn 1989, Hsu
1996).

Another error rate that is becoming popular is the false discovery rate
or FDR (Benjamini & Hochberg 1995).. This is defined as the propor-
tion of Type I errors in a set of comparisons. Procedures that use
the FDR have more power than those controlling the EER, but with more
Type I errors. We will examine the rationale for FDR procedures later in
the chapter.

13.3 All pairwise comparisons

This section examines three different methods for all pairwise comparisons
among groups, the least significant difference, Tukey, and REGW methods.
The least significant difference method does not control the EER, but is sim-
ple in form and a useful starting point. It provides estimates and confidence
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intervals for µi − µj, the difference between the group means for any pair of
groups, as well as a statistical test for H0 : µi − µj. The Tukey procedure is
similar to the least significant difference except that it controls the EER. We
also examine the REGW method, an example of a multiple range test.
Multiple range procedures only provide tests, not confidence intervals, but
are more powerful procedures.

13.3.1 Least significant difference

We first develop confidence intervals and construct statistical tests for the
least significant difference procedure, using methods similar to those in Chap-
ter 9 and 10. For multiple comparisons, we are interested in estimating µi−µj
and finding a confidence interval for this quantity. It seems reasonable to use
Ȳi− Ȳj to estimate µi− µj, but what is the variance of this estimate? Using
the rules for calculating the variance of a sum of random variables (Chapter
7), we have

V ar[Ȳi − Ȳj] = V ar[Ȳi] + (−1)2V ar[Ȳj] = σ2/n+ σ2/n = 2σ2/n. (13.3)

ANOVA provides an estimate of σ2, namely MSwithin, and so we can estimate
the variance of Ȳi − Ȳj using the quantity 2MSwithin/n, which has a(n − 1)
degrees of freedom. Using these results, it can be shown that the quantity

(Ȳi − Ȳj)− (µi − µj)√
2MSwithin

n

∼ ta(n−1). (13.4)

We use this quantity to first derive a confidence interval for µi − µj. Using
Table T, we can find a value of cα,a(n−1) for a(n− 1) degrees of freedom such
that the following equation is true:

P

−cα,a(n−1) <
(Ȳi − Ȳj)− (µi − µj)√

2MSwithin
n

< cα,a(n−1)

 = 1− α. (13.5)

Rearranging this equation, we obtain

P

[
Ȳi − Ȳj − cα,a(n−1)

√
2MSwithin

n
< µi − µj < Ȳi − Ȳj + cα,a(n−1)

√
2MSwithin

n

]
= 1− α. (13.6)
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The confidence interval would therefore be the interval(
Ȳi − Ȳj − cα,a(n−1)

√
2MSwithin

n
, Ȳi − Ȳj + cα,a(n−1)

√
2MSwithin

n

)
. (13.7)

The center of the confidence interval is located at Ȳi − Ȳj, the estimate of
µi−µj. We will later illustrate how this interval is calculated in a SAS demo
of the least significant difference procedure.

Now suppose we want to test H0 : µi = µj or equivalently H0 : µi−µj = 0.
Under H0, the test statistic

Ts =
(Ȳi − Ȳj)− 0√

2MSwithin
n

=
(Ȳi − Ȳj)√

2MSwithin
n

∼ ta(n−1). (13.8)

Using a Type I error rate of α, the acceptance region of the test would be
the interval (−cα,a(n−1), cα,a(n−1)), where cα,a(n−1) is determined using Table
T (see Chapter 10). We would reject H0 if it falls on the edge or outside this
interval.

We can rearrange the test given above into a different form, one that is
commonly used for multiple comparisons. Recall that one would accept H0

if Ts falls inside the acceptance region (−cα,a(n−1), cα,a(n−1)), which implies

−cα,a(n−1) <
(Ȳi − Ȳj)√

2MSwithin
n

< cα,a(n−1). (13.9)

We can rearrange this into the form

−cα,a(n−1)

√
2MSwithin

n
< Ȳi − Ȳj < cα,a(n−1)

√
2MSwithin

n
, (13.10)

or
−LSD < Ȳi − Ȳj < LSD, (13.11)

where

LSD = cα,a(n−1)

√
2MSwithin

n
. (13.12)

The quantity LSD is called the least significant difference. We would accept
H0 if Ȳi − Ȳj falls inside the interval (−LSD,LSD), or equivalently if |Ȳi −
Ȳj| < LSD. Conversely, we would reject H0 if |Ȳi − Ȳj| ≥ LSD. This



13.3. ALL PAIRWISE COMPARISONS 349

same rule applies to any pair of groups, because LSD would take the same
value. Any pair of means that equals or exceeds this value is declared to be
significantly different.

The confidence intervals we derived for µi − µj can also be expressed in
this format. In particular, the confidence interval would have the form(

Ȳi − Ȳj − LSD, Ȳi − Ȳj + LSD
)
. (13.13)

13.3.2 Least significant difference - SAS demo

Kneitel & Lessin (2010) studied the effect of eutrophication on vernal pools
in California. They were interested in the effect of eutrophication (nutrient
addition) on algae cover during the period the pools were filled with water,
as well as vascular plant cover later in the season. Experimental pools were
subjected to five different treatments: low, medium, high, and very high
nutrient addition levels, and a control to which no nutrients were added. We
will use a simplified data set from this study to illustrate the least significant
difference procedure in SAS. We first examine the data involving algae cover.
Algae cover was expressed as a percentage of the pool covered, and for data of
this type it is common to transform the data. The data were first converted
to a proportion by dividing the percentage by 100, then the arcsine-square
root transformation applied (see Chapter 15). See the data step in the SAS
program below.

The program is similar to our previous one-way ANOVA programs, with
the addition of a means statement within proc glm:

means treat / t cldiff lines;

This statement requests a mean for each level of treat, the treatment variable
(SAS Institute Inc. 2014). The t option requests the least significant differ-
ence procedure, because it is essentially a t test. The option cldiff requests
95% confidence intervals for µi−µj for all pairs of groups, while lines gener-
ates a diagram that indicates which pairs of groups are significantly different
at the α = 0.05 level. See the full program listing and SAS output below.

According to the one-way ANOVA results, there was a highly significant
difference among the nutrient treatments (F4,20 = 4.76, P < 0.0073). Con-
fidence intervals for µi − µj and µj − µi are given for every pair of groups.
For example, SAS gives a confidence interval for µmedium − µcontrol as well as
µcontrol − µmedium. Also shown in the output is the diagram generated by the
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lines command. Treatments with different letters are significantly
different, while if they have the same letter they are not signifi-
cantly different. According to the letters, the very high, high, and medium
treatments are significantly different from the low and control treatments,
while there were no significant differences within these two groups. This
lettering scheme can also be used to indicate significant differences among
treatments within a graph (Fig. 13.2).

SAS Program

* Kneitel_2010_algae_lsd2.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Multiple comparisons for algae cover’;

title2 ’Data from Kneitel and Lessin (2010)’;

data kneitel;

input treat $ richness total algae;

* Apply transformations here;

y = arsin(sqrt(algae/100));

datalines;

Control 8 78 1

Control 5 84 7

Control 10 115 45

Control 7 200 100

Control 6 72 20

Low 8 73 15

Low 7 124 70

Low 8 116 50

Low 8 92 5

Low 7 138 60

Medium 7 124 85

Medium 8 116 80

Medium 8 145 60

Medium 6 154 100

Medium 7 129 90

High 6 134 95

High 7 138 95

High 8 103 70

High 8 119 75

High 6 132 80

VeryHigh 6 148 95

VeryHigh 5 134 95

VeryHigh 5 119 100

VeryHigh 5 117 90

VeryHigh 5 129 80
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;

run;

* Print data set;

proc print data=kneitel;

run;

* Plot means, standard errors, and observations;

proc gplot data=kneitel;

plot y*treat=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* One-way anova with comparisons;

proc glm data=kneitel;

class treat;

model y = treat;

output out=resids p=pred r=resid;

* LSD or Students t - only controls the per comparison error rate;

means treat / t cldiff lines;

run;

goptions reset=all;

title "Diagnostic plots to check anova assumptions";

* Plot residuals vs. predicted values;

proc gplot data=resids;

plot resid*pred=1 / vaxis=axis1 haxis=axis1;

symbol1 v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Normal quantile plot of residuals;

proc univariate noprint data=resids;

qqplot resid / normal waxis=3 height=4;

run;

quit;
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SAS Output

Multiple comparisons for algae cover 1

Data from Kneitel and Lessin (2010)

15:51 Tuesday, July 3, 2012

Obs treat richness total algae y

1 Control 8 78 1 0.10017

2 Control 5 84 7 0.26776

3 Control 10 115 45 0.73531

4 Control 7 200 100 1.57080

5 Control 6 72 20 0.46365

6 Low 8 73 15 0.39770

7 Low 7 124 70 0.99116

8 Low 8 116 50 0.78540

9 Low 8 92 5 0.22551

10 Low 7 138 60 0.88608

11 Medium 7 124 85 1.17310

12 Medium 8 116 80 1.10715

13 Medium 8 145 60 0.88608

14 Medium 6 154 100 1.57080

15 Medium 7 129 90 1.24905

16 High 6 134 95 1.34528

17 High 7 138 95 1.34528

18 High 8 103 70 0.99116

19 High 8 119 75 1.04720

20 High 6 132 80 1.10715

21 VeryHigh 6 148 95 1.34528

22 VeryHigh 5 134 95 1.34528

23 VeryHigh 5 119 100 1.57080

24 VeryHigh 5 117 90 1.24905

25 VeryHigh 5 129 80 1.10715

Multiple comparisons for algae cover 2

Data from Kneitel and Lessin (2010)

15:51 Tuesday, July 3, 2012

The GLM Procedure

Class Level Information

Class Levels Values
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treat 5 Control High Low Medium VeryHigh

Number of Observations Read 25

Number of Observations Used 25

Multiple comparisons for algae cover 3

Data from Kneitel and Lessin (2010)

15:51 Tuesday, July 3, 2012

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 2.13816313 0.53454078 4.76 0.0073

Error 20 2.24444069 0.11222203

Corrected Total 24 4.38260382

R-Square Coeff Var Root MSE y Mean

0.487875 33.68371 0.334996 0.994533

Source DF Type I SS Mean Square F Value Pr > F

treat 4 2.13816313 0.53454078 4.76 0.0073

Source DF Type III SS Mean Square F Value Pr > F

treat 4 2.13816313 0.53454078 4.76 0.0073

Multiple comparisons for algae cover 4

Data from Kneitel and Lessin (2010)

15:51 Tuesday, July 3, 2012

The GLM Procedure
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t Tests (LSD) for y

NOTE: This test controls the Type I comparisonwise error rate, not the

experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 0.112222

Critical Value of t 2.08596

Least Significant Difference 0.442

Comparisons significant at the 0.05 level are indicated by ***.

Difference

treat Between 95% Confidence

Comparison Means Limits

VeryHigh - Medium 0.1263 -0.3157 0.5682

VeryHigh - High 0.1563 -0.2857 0.5983

VeryHigh - Low 0.6663 0.2244 1.1083 ***

VeryHigh - Control 0.6960 0.2540 1.1379 ***

Medium - VeryHigh -0.1263 -0.5682 0.3157

Medium - High 0.0300 -0.4119 0.4720

Medium - Low 0.5401 0.0981 0.9820 ***

Medium - Control 0.5697 0.1277 1.0116 ***

High - VeryHigh -0.1563 -0.5983 0.2857

High - Medium -0.0300 -0.4720 0.4119

High - Low 0.5100 0.0681 0.9520 ***

High - Control 0.5397 0.0977 0.9816 ***

Low - VeryHigh -0.6663 -1.1083 -0.2244 ***

Low - Medium -0.5401 -0.9820 -0.0981 ***

Low - High -0.5100 -0.9520 -0.0681 ***

Low - Control 0.0296 -0.4123 0.4716

Control - VeryHigh -0.6960 -1.1379 -0.2540 ***

Control - Medium -0.5697 -1.0116 -0.1277 ***

Control - High -0.5397 -0.9816 -0.0977 ***

Control - Low -0.0296 -0.4716 0.4123

Multiple comparisons for algae cover 5

Data from Kneitel and Lessin (2010)
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15:51 Tuesday, July 3, 2012

The GLM Procedure

t Tests (LSD) for y

NOTE: This test controls the Type I comparisonwise error rate, not the

experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 0.112222

Critical Value of t 2.08596

Least Significant Difference 0.442

Means with the same letter are not significantly different.

t Grouping Mean N treat

A 1.3235 5 VeryHigh

A

A 1.1972 5 Medium

A

A 1.1672 5 High

B 0.6572 5 Low

B

B 0.6275 5 Control
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Figure 13.2: Algae cover vs. nutrient addition treatment for data from Knei-
tel and Lessin (2010). Means with different letters are significantly different
(least significant difference method).



13.3. ALL PAIRWISE COMPARISONS 357

We will now calculate the value of LSD for this example to show how it
is used to construct confidence intervals and tests. From the ANOVA output
for proc glm, we see that MSwithin = 0.1122 with 20 degrees of freedom. From
Table T (Chapter 22), using α = 0.05 we see that c0.05,20 = 2.086. There are
also n = 5 replicates per treatment. We then have

LSD = cα,a(n−1)

√
2MSwithin

n
= 2.086

√
2(0.1122)

5
= 0.4419. (13.14)

Note that SAS also displays the value of LSD in the output. We next
calculate a 95% confidence interval for µmedium − µcontrol. Recall that the
formula for the interval is(

Ȳi − Ȳj − LSD, Ȳi − Ȳj + LSD
)
. (13.15)

Inserting the estimated means for these two treatments (see SAS output) in
this formula, and the LSD value, we obtain

(1.1972− 0.6275− 0.4419, 1.1972− 0.6275 + 0.4419) (13.16)

or (0.1278, 1.0116). This confidence interval and the LSD value are quite
close to the values obtained by SAS.

We now show how the LSD value is used to test H0 : µmedium−µcontrol = 0
or equivalently H0 : µmedium = µcontrol. We would reject H0 if |Ȳi − Ȳj| ≥
LSD. Inserting the estimated means for these two treatments, we see that
|1.1972−0.6275| = 0.5687 ≥ 0.4419, and so this pair of means is significantly
different.

13.3.3 The Tukey procedure

The Tukey method for multiple comparisons is similar to the least significant
difference procedure, except that it uses the studentized range distribu-
tion in place of the t distribution. The studentized range distribution is
designed to control the EER rate for all pairwise comparisons among group
means (Hsu 1996). Another advantage is that the confidence intervals con-
structed using this distribution are simultaneous confidence intervals.
This means that the overall probability the confidence intervals include the
true value of µi−µj, for all pairs of groups, is equal to 1−α for some specified
α. The overall probability α is also the EER for the family of all pairwise
tests.
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The Tukey procedure makes use of a quantity called the honestly signifi-
cant difference (HSD), defined as

HSD = qα,a,a(n−1)

√
MSwithin

n
. (13.17)

The quantity qα,a,a(n−1) is obtained from the studentized range distribution,
and depends on α (the desired EER), the number of groups a, as well as the
degrees of freedom for MSwithin.

To test H0 : µi = µj or H0 : µi−µj = 0, we accept H0 if |Ȳi− Ȳj| < HSD,
and reject it |Ȳi− Ȳj| ≥ HSD. This same rule applies to any pair of groups,
because HSD would take the same value. Any pair of means that equals
or exceeds this value is declared to be significantly different. The Tukey
confidence intervals are of the form(

Ȳi − Ȳj −HSD, Ȳi − Ȳj +HSD
)
. (13.18)

13.3.4 Tukey procedure - SAS demo

Implementing the Tukey procedure requires only a small change in our pre-
vious SAS program. The means statement within proc glm becomes

means treat / tukey cldiff lines;

Confidence intervals for µi−µj and µj−µi are given for every pair of groups,
as well as a diagram indicating which treatments are significantly different.
See a section of the SAS output below. For this example, the Tukey finds
fewer significant comparisons than the least significant difference procedure.
We see there are only two significant comparisons, very high vs. low and
very high vs. control treatments. This is a common pattern observed with
multiple comparison tests, a few significant differences but also substantial
overlap among treatments or groups.
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SAS Output

Multiple comparisons for algae cover 4

Data from Kneitel and Lessin (2010)

11:45 Thursday, July 5, 2012

The GLM Procedure

Tukey’s Studentized Range (HSD) Test for y

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 0.112222

Critical Value of Studentized Range 4.23186

Minimum Significant Difference 0.634

Comparisons significant at the 0.05 level are indicated by ***.

Difference Simultaneous

treat Between 95% Confidence

Comparison Means Limits

VeryHigh - Medium 0.1263 -0.5077 0.7603

VeryHigh - High 0.1563 -0.4777 0.7903

VeryHigh - Low 0.6663 0.0323 1.3003 ***

VeryHigh - Control 0.6960 0.0620 1.3300 ***

Medium - VeryHigh -0.1263 -0.7603 0.5077

Medium - High 0.0300 -0.6040 0.6640

Medium - Low 0.5401 -0.0939 1.1741

Medium - Control 0.5697 -0.0643 1.2037

High - VeryHigh -0.1563 -0.7903 0.4777

High - Medium -0.0300 -0.6640 0.6040

High - Low 0.5100 -0.1239 1.1440

High - Control 0.5397 -0.0943 1.1737

Low - VeryHigh -0.6663 -1.3003 -0.0323 ***

Low - Medium -0.5401 -1.1741 0.0939

Low - High -0.5100 -1.1440 0.1239

Low - Control 0.0296 -0.6044 0.6636

Control - VeryHigh -0.6960 -1.3300 -0.0620 ***

Control - Medium -0.5697 -1.2037 0.0643
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Control - High -0.5397 -1.1737 0.0943

Control - Low -0.0296 -0.6636 0.6044

Multiple comparisons for algae cover 5

Data from Kneitel and Lessin (2010)

11:45 Thursday, July 5, 2012

The GLM Procedure

Tukey’s Studentized Range (HSD) Test for y

NOTE: This test controls the Type I experimentwise error rate, but it generally

has a higher Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 0.112222

Critical Value of Studentized Range 4.23186

Minimum Significant Difference 0.634

Means with the same letter are not significantly different.

Tukey Grouping Mean N treat

A 1.3235 5 VeryHigh

A

B A 1.1972 5 Medium

B A

B A 1.1672 5 High

B

B 0.6572 5 Low

B

B 0.6275 5 Control
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We will now calculate the value of HSD for this example, to show how
it is used to construct confidence intervals and tests. As before, we have
MSwithin = 0.1122 with 20 degrees of freedom. The SAS output gives the
value of q0.05,5,20 = 4.2319, and there are n = 5 replicates per treatment. We
then have

HSD = qα,a,a(n−1)

√
MSwithin

n
= 4.2319

√
(0.1122)

5
= 0.6339. (13.19)

This value agrees with the SAS output labeled Minimum Significant Difference.
We now calculate a 95% confidence interval for µmedium−µcontrol. The formula
for the confidence interval is(

Ȳi − Ȳj −HSD, Ȳi − Ȳj +HSD
)
. (13.20)

Inserting the estimated means for these two treatments (see SAS output) in
this formula, and the HSD value, we obtain

(1.1972− 0.6275− 0.6339, 1.1972− 0.6275 + 0.6339) . (13.21)

or (−0.0642, 1.2036). This confidence interval is close to the value provided
by SAS.

How does this procedure control the EER as well as provide simultane-
ous confidence intervals? The Tukey procedure basically controls the
EER by making each pairwise test more conservative, through the
use of the studentized range distribution. Notice that HSD > LSD
for the same data set (0.6339 vs. 0.4419). This means that the Tukey pro-
cedure requires a larger difference between groups before declaring they are
significantly different, and the confidence intervals are also broader. As a
consequence, there is lower power to detect differences among groups when
they do exist. This is the price paid for controlling the EER.

13.3.5 Multiple range tests - REGW

The multiple comparison procedures we have examined so far yield both
tests and confidence intervals. Another type of multiple comparison pro-
cedure are multiple range tests. These procedures provide only tests, but
are also more powerful procedures because they essentially conduct fewer
overall tests than the methods we studied earlier. There are a number of
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different multiple range tests, but we will only examine the REGW (Ryan-
Einot-Gabriel-Welsch) procedure because it controls the EER (Hsu 1996).

The test works as follows (Hsu 1996). Suppose we order the sample means
of the a different groups from smallest to largest:

Ȳ[1] ≤ Ȳ[2] ≤ . . . Ȳ[a−1],≤ Ȳ[a] (13.22)

where Ȳ[1] is the smallest and Ȳ[a] the largest sample mean.

We then examine the range (difference) between the largest and smallest
sample mean, namely Ȳ[a] − Ȳ[1]. If

Ȳ[a] − Ȳ[1] < qa

√
MSwithin

n
(13.23)

then we stop and declare there are no significant differences among groups.
Otherwise, we assert that these two groups are significantly different and
continue the process. We next examine the next innermost ranges Ȳ[a−1]−Ȳ[1]

and Ȳ[a] − Ȳ[2]. If

Ȳ[a−1] − Ȳ[1]] < qa−1

√
MSwithin

n
(13.24)

and

Ȳ[a1] − Ȳ[2]] < qa−1

√
MSwithin

n
(13.25)

then we stop the testing process. Otherwise, we assert that one or both
groups are significantly different. This process is continued until no more
significant differences are found.

The values of q are not the same for every step of the test. They are
constructed so that qa > qa−1 > . . . > q2, meaning that the largest range is
tested using the largest value of q, the next largest two ranges with a smaller
value of q, and so forth. This implies that the largest range must have the
largest difference in means to be judged significant, while later tests allow for
smaller differences. The values of q are chosen so that the experimentwise
error rate has a specified value, usually α = 0.05 (Hsu 1996). The studentized
range distribution is involved in this process. The value of qa used in the first
step of the procedure is the same as that used by the Tukey procedure, as well
as the difference in the means judged to be significant. The two procedures
diverge after this point.
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13.3.6 REGW procedure - SAS demo

Implementing the REGW procedure requires only a small change in our
previous SAS programs. The means statement within proc glm becomes

means treat / regwq;

Here the regwq option requests the REGW procedure. SAS then generates
a diagram indicating which groups are significantly different. See a section
of the SAS output below, using the same data as our previous examples.
For this example, the REGW procedure gives the same pattern of significant
differences among groups as the Tukey method. The REGW procedure may
become liberal (not fully control the EER) when the data are unbalanced,
and SAS prints a warning note in this situation.
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SAS Output

Multiple comparisons for algae cover 4

Data from Kneitel and Lessin (2010)

11:45 Thursday, July 5, 2012

The GLM Procedure

Ryan-Einot-Gabriel-Welsch Multiple Range Test for y

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 0.112222

Number of Means 2 3 4 5

Critical Range 0.5340892 0.5871678 0.5930101 0.6339938

Means with the same letter are not significantly different.

REGWQ Grouping Mean N treat

A 1.3235 5 VeryHigh

A

B A 1.1972 5 Medium

B A

B A 1.1672 5 High

B

B 0.6572 5 Low

B

B 0.6275 5 Control
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13.4 Comparisons with a control - Dunnett

procedure

Many studies include some sort of control group or treatment, and the exper-
imenter may only be interested in comparing the control group with each of
the other a− 1 groups. For example, the control could represent a standard
medical treatment for a disease while the other treatments represent alter-
native forms of therapy. The physician only wants to know if the alternative
forms are better or worse than the standard method.

In this situation, there are only a−1 comparisons to be made rather than
the full a(a−1)/2 comparisons of all pairs of means. The Dunnett procedure
is designed to control the EER for just these a − 1 comparisons, and hence
has more power than other pairwise methods (Hsu 1996). The calculations
are similar to the Tukey method, but use the quantity

DSD = dα,a,a(n−1)

√
2MSwithin

n
, (13.26)

whereDSD stands for Dunnett’s significant difference. The values of dα,a,a(n−1)

are obtained from a distribution analogous to the studentized range distri-
bution, except that it controls the EER for a− 1 comparisons. The value of
d depends on α (the desired EER), the number of groups a, and the degrees
of freedom for MSwithin.

Let µc be the mean of the control group, while µi is any other group.
Dunnett’s procedure can be used to test for H0 : µi = µc or equivalently
H0 : µi − µc = 0. We would accept H0 if |Ȳi − Ȳc| < DSD. Conversely, we
would reject H0 if |Ȳi−Ȳc| ≥ DSD. This same rule applies to all comparisons
with the control group.

Confidence intervals for µi − µc have the form(
Ȳi − Ȳc −DSD, Ȳi − Ȳc +DSD

)
. (13.27)

13.4.1 Dunnett’s procedure - SAS demo

Using Dunnett’s procedure requires only a small change to our program. The
means statement within proc glm becomes

means treat / dunnett(’Control’);



366 CHAPTER 13. MULTIPLE COMPARISONS

The control group in our data set is coded as Control, and the (’Control’)

portion of the statement informs SAS of this fact. Confidence intervals for
µi − µc are given in the SAS output, with the symbol *** indicating which
comparisons of the control are significantly different. We see that the very
high and medium treatments are significantly different from control.

SAS Output

Multiple comparisons for algae cover 4

Data from Kneitel and Lessin (2010)

11:45 Thursday, July 5, 2012

The GLM Procedure

Dunnett’s t Tests for y

NOTE: This test controls the Type I experimentwise error for comparisons of all

treatments against a control.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 0.112222

Critical Value of Dunnett’s t 2.65103

Minimum Significant Difference 0.5617

Comparisons significant at the 0.05 level are indicated by ***.

Difference Simultaneous

treat Between 95% Confidence

Comparison Means Limits

VeryHigh - Control 0.6960 0.1343 1.2576 ***

Medium - Control 0.5697 0.0080 1.1314 ***

High - Control 0.5397 -0.0220 1.1013

Low - Control 0.0296 -0.5320 0.5913
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13.5 Bonferroni and Sidak corrections

One way of controlling the EER in a set of comparisons is to use a distribution
designed to control it, such as the studentized range distribution. These
procedures control the EER by essentially making the per comparison rate
for each test more conservative. This adjustment of the per comparison error
rate is built into the studentized range distribution.

The Bonferroni correction provides another way of controlling the EER,
by explicitly reducing the per comparison error rate and then using a simple t
test (like the least significant difference procedure) to compare group means.
Suppose that we are interested in k possible comparisons, either all a(a−1)/2
pairwise comparisons or a − 1 comparisons with a control, where a is the
number of groups. The Bonferroni correction adjusts the per comparison
error rate as follows. Let α be the per comparison error rate, while α′ is the
desired EER. If we conduct each comparison at the per comparison rate of

α =
α′

k
, (13.28)

then it can be shown the EER will not exceed α′ (Hsu 1996). For example,
suppose we are interested in all k = a(a − 1)/2 pairwise comparison among
groups. We would then conduct each test at the

α =
α′

k
=

α′

a(a− 1)/2
(13.29)

level. We would use the same t test as in the least significant difference
procedure, but adjust the value α according to this formula. We then have

BSD = c α′
a(a−1)/2

,a(n−1)

√
2MSwithin

n
, (13.30)

where BSD is the difference judged to be significant given the Bonferroni
correction. We would accept H0 : µi = µj (or H0 : µi − µj = 0) if Ȳi − Ȳj
falls inside the interval (−BSD,BSD), or equivalently if |Ȳi − Ȳj| < BSD.
Conversely, we would reject H0 if |Ȳi− Ȳj| ≥ BSD. A confidence interval for
µi − µj based on the Bonferroni correction would have the form(

Ȳi − Ȳj −BSD, Ȳi − Ȳj +BSD
)
. (13.31)

To make things more concrete, we can calculate the value of BSD for the
algae cover example (Kneitel & Lessin 2010). From our previous output, we
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have a = 5 groups, n = 5 replicates per group, and MSwithin = 0.1122. If we
set the EER to be α′ = 0.05, by the above formula we have

α =
α′

a(a− 1)/2
=

0.05

5(5− 1)/2
=

0.05

10
= 0.005. (13.32)

For α = 0.005, we have c0.005,20 = 3.1534, and so

BSD = c α′
a(a−1)/2

,a(n−1)

√
2MSwithin

n
= 3.1534

√
2(0.1122)

5
= 0.6681. (13.33)

Note that the value of BSD = 0.6681 is larger than HSD = 0.6339 value for
the Tukey procedure. Thus, the Bonferroni method requires a greater differ-
ence among means before declaring they are significantly different, implying
it has lower power than the Tukey procedure. It would also generate larger
confidence intervals and so provides less precision in estimation.

Given these drawbacks, why would the Bonferroni correction be used?
The Bonferroni procedure is quite general and can be used to control the EER
for other testing procedures, not just comparisons among means in ANOVA.
For example, it is common to have a collection of statistical tests that address
a particular question. We might have a single experiment in which a number
of different Y variables are measured, with a separate ANOVA conducted
on each variable. If enough variables are examined it is possible that some
could be significant by chance, and we could control the EER for all these
tests using the Bonferroni correction, with k being the number of Y variables.
There is also a version of this procedure similar in spirit to REGW, called
the sequential Bonferroni method (Rice 1989). The sequential Bonfer-
roni alleviates to some extent the lack of power in the standard Bonferroni
correction. This procedure is implemented in proc multtest in SAS.

The Sidak correction is another procedure used to control the EER, which
provides slightly more power than the Bonferroni method. Let α be the
per comparison error rate, while α′ is the desired EER. If we conduct each
comparison at the per comparison rate of

α = 1− (1− α′)1/k, (13.34)

then the actual EER will not exceed α′. For example, suppose we are inter-
ested in all k = a(a − 1)/2 pairwise comparison among groups. We would
then conduct each test at the

α = 1− (1− α′)1/k = 1− (1− α′)1/[a(a−1)/2] (13.35)
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level. For α′ = 0.05 and a = 5 groups, we obtain

α = 1− (1− α′)1/[a(a−1)/2] = 1− (1− 0.05)1/10 = 0.0051. (13.36)

We would then compare pairs of means using the same test as for the Bonfer-
roni correction, except that we would use α = 0.0051 rather than α = 0.005.
This value of α is a bit larger than the corresponding Bonferroni one, making
the Sidak correction slightly more powerful.

SAS implements both the Bonferroni and Sidak corrections in the means

statement with the options bon or sidak, similar to using the tukey option.

13.6 Vascular plant cover - SAS demo

Kneitel & Lessin (2010) also examined vascular plant cover in their study
of the effect of eutrophication on vernal pools in California. Vascular plant
cover (cover) was derived by subtracting algal cover (algae) from total cover
(total), then arcsine-square root transformed before analysis (see Chapter
15). See data step in the SAS program below.

The proc glm code compares all possible pairs of group means using the
Tukey procedure, and also compares the Control treatment with the other
treaments using Dunnett’s procedure. This was done to provide more exam-
ples of these procedures. In practice, you should choose one procedure
for comparing the means.

The diagram generated by the Tukey procedure indicates two significant
differences among treatments. Reading the diagram, we see the control vs.
high and control vs. very high comparisons are significant, because they have
different letters. No other pairs of groups are significantly different. Fig. 13.3
indicates how these results could be graphically displayed using letters. We
see that vascular plant cover actually decreases with increased nutrient levels,
likely due to inhibition from the algal mats that form (Kneitel and Lessin
2010).

We can also determine which groups are significantly different by exam-
ining the confidence intervals generated by the Tukey procedure. Confidence
intervals that do not include zero indicate a significant difference among
groups, because of the duality between confidence intervals and tests (see
Chapter 10). The significant tests are indicated by *** in the SAS output.
The SAS output for Dunnett’s procedure shows that the high and very high
treatments are significantly different from the control group.
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SAS Program

* Kneitel_2010_cover2.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Multiple comparisons for vascular plant cover’;

title2 ’Data from Kneitel and Lessin (2010)’;

data kneitel;

input treat $ richness total algae;

* Apply transformations here;

vcover = total-algae;

y = arsin(sqrt(vcover/100));

datalines;

Control 8 78 1

Control 5 84 7

Control 10 115 45

Control 7 200 100

Control 6 72 20

Low 8 73 15

Low 7 124 70

Low 8 116 50

Low 8 92 5

Low 7 138 60

Medium 7 124 85

Medium 8 116 80

Medium 8 145 60

Medium 6 154 100

Medium 7 129 90

High 6 134 95

High 7 138 95

High 8 103 70

High 8 119 75

High 6 132 80

VeryHigh 6 148 95

VeryHigh 5 134 95

VeryHigh 5 119 100

VeryHigh 5 117 90

VeryHigh 5 129 80

;

run;

* Print data set;

proc print data=kneitel;

* Plot means, standard errors, and observations;

proc gplot data=kneitel;

plot y*treat=1 / vaxis=axis1 haxis=axis1;
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symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* One-way anova with comparisons;

proc glm order=data data=kneitel;

class treat;

model y = treat;

output out=resids p=pred r=resid;

* Tukey procedure - controls the EER;

means treat / tukey cldiff lines;

* Dunnett’s procedure - controls EER for comparisons with a control;

means treat / dunnett(’Control’);

run;

goptions reset=all;

title "Diagnostic plots to check anova assumptions";

* Plot residuals vs. predicted values;

proc gplot data=resids;

plot resid*pred=1 / vaxis=axis1 haxis=axis1;

symbol1 v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Normal quantile plot of residuals;

proc univariate noprint data=resids;

qqplot resid / normal waxis=3 height=4;

run;

quit;
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SAS Output

Multiple comparisons for vascular plant cover 1

Data from Kneitel and Lessin (2010)

11:45 Thursday, July 5, 2012

Obs treat richness total algae vcover y

1 Control 8 78 1 77 1.07062

2 Control 5 84 7 77 1.07062

3 Control 10 115 45 70 0.99116

4 Control 7 200 100 100 1.57080

5 Control 6 72 20 52 0.80540

6 Low 8 73 15 58 0.86574

7 Low 7 124 70 54 0.82544

8 Low 8 116 50 66 0.94826

9 Low 8 92 5 87 1.20193

10 Low 7 138 60 78 1.08259

11 Medium 7 124 85 39 0.67449

12 Medium 8 116 80 36 0.64350

13 Medium 8 145 60 85 1.17310

14 Medium 6 154 100 54 0.82544

15 Medium 7 129 90 39 0.67449

16 High 6 134 95 39 0.67449

17 High 7 138 95 43 0.71517

18 High 8 103 70 33 0.61194

19 High 8 119 75 44 0.72525

20 High 6 132 80 52 0.80540

21 VeryHigh 6 148 95 53 0.81542

22 VeryHigh 5 134 95 39 0.67449

23 VeryHigh 5 119 100 19 0.45103

24 VeryHigh 5 117 90 27 0.54640

25 VeryHigh 5 129 80 49 0.77540

Multiple comparisons for vascular plant cover 2

Data from Kneitel and Lessin (2010)

11:45 Thursday, July 5, 2012

The GLM Procedure

Class Level Information

Class Levels Values
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treat 5 Control Low Medium High VeryHigh

Number of Observations Read 25

Number of Observations Used 25

Multiple comparisons for vascular plant cover 3

Data from Kneitel and Lessin (2010)

11:45 Thursday, July 5, 2012

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 0.71900305 0.17975076 4.93 0.0063

Error 20 0.72959178 0.03647959

Corrected Total 24 1.44859482

R-Square Coeff Var Root MSE y Mean

0.496345 22.50344 0.190996 0.848743

Source DF Type I SS Mean Square F Value Pr > F

treat 4 0.71900305 0.17975076 4.93 0.0063

Source DF Type III SS Mean Square F Value Pr > F

treat 4 0.71900305 0.17975076 4.93 0.0063

Multiple comparisons for vascular plant cover 4

Data from Kneitel and Lessin (2010)

11:45 Thursday, July 5, 2012

The GLM Procedure
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Tukey’s Studentized Range (HSD) Test for y

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 0.03648

Critical Value of Studentized Range 4.23186

Minimum Significant Difference 0.3615

Comparisons significant at the 0.05 level are indicated by ***.

Difference Simultaneous

treat Between 95% Confidence

Comparison Means Limits

Control - Low 0.1169 -0.2445 0.4784

Control - Medium 0.3035 -0.0580 0.6650

Control - High 0.3953 0.0338 0.7567 ***

Control - VeryHigh 0.4492 0.0877 0.8106 ***

Low - Control -0.1169 -0.4784 0.2445

Low - Medium 0.1866 -0.1749 0.5481

Low - High 0.2783 -0.0831 0.6398

Low - VeryHigh 0.3322 -0.0292 0.6937

Medium - Control -0.3035 -0.6650 0.0580

Medium - Low -0.1866 -0.5481 0.1749

Medium - High 0.0918 -0.2697 0.4532

Medium - VeryHigh 0.1457 -0.2158 0.5071

High - Control -0.3953 -0.7567 -0.0338 ***

High - Low -0.2783 -0.6398 0.0831

High - Medium -0.0918 -0.4532 0.2697

High - VeryHigh 0.0539 -0.3076 0.4154

VeryHigh - Control -0.4492 -0.8106 -0.0877 ***

VeryHigh - Low -0.3322 -0.6937 0.0292

VeryHigh - Medium -0.1457 -0.5071 0.2158

VeryHigh - High -0.0539 -0.4154 0.3076

Multiple comparisons for vascular plant cover 5

Data from Kneitel and Lessin (2010)

11:45 Thursday, July 5, 2012
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The GLM Procedure

Tukey’s Studentized Range (HSD) Test for y

NOTE: This test controls the Type I experimentwise error rate, but it generally

has a higher Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 0.03648

Critical Value of Studentized Range 4.23186

Minimum Significant Difference 0.3615

Means with the same letter are not significantly different.

Tukey Grouping Mean N treat

A 1.1017 5 Control

A

B A 0.9848 5 Low

B A

B A 0.7982 5 Medium

B

B 0.7065 5 High

B

B 0.6525 5 VeryHigh

Multiple comparisons for vascular plant cover 6

Data from Kneitel and Lessin (2010)

11:45 Thursday, July 5, 2012

The GLM Procedure

Dunnett’s t Tests for y

NOTE: This test controls the Type I experimentwise error for comparisons of all

treatments against a control.

Alpha 0.05
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Error Degrees of Freedom 20

Error Mean Square 0.03648

Critical Value of Dunnett’s t 2.65103

Minimum Significant Difference 0.3202

Comparisons significant at the 0.05 level are indicated by ***.

Difference Simultaneous

treat Between 95% Confidence

Comparison Means Limits

Low - Control -0.1169 -0.4372 0.2033

Medium - Control -0.3035 -0.6237 0.0167

High - Control -0.3953 -0.7155 -0.0750 ***

VeryHigh - Control -0.4492 -0.7694 -0.1289 ***

Figure 13.3: Vascular plant cover vs. nutrient addition treatment for simu-
lated data patterned after Kneitel and Lessin (2010). Means with different
letters are significantly different (Tukey procedure).
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13.7 False discovery rate method

The multiple comparison procedures we have examined control the EER,
but at the cost of power. This is especially true for studies with many
treatments or groups. For example, suppose we have a = 5 treatments and
want to conduct all pairwise comparisons using the Bonferroni method, with
an EER of α′ = 0.05. There are k = a(a − 1)/2 = 5(4)/2 = 10 pairwise
comparisons, and so we would conduct each comparison at the α = α′/k =
0.05/10 = 0.005 level. For a = 10 treatments, a similar calculation suggests
that each comparison should be conducted at the α = 0.0011 level, yielding
a much more conservative test. As the number of treatments increases, this
makes it less likely significant differences will be found, and so the power to
detect differences among treatments decreases. The number of treatments
has similar effects on other multiple comparison procedures that control the
EER.

The false discovery rate method provides an alternative approach to
multiple comparisons and tests. This method controls the proportion of
Type I errors in a set of comparisons, known as the false discovery rate or
FDR (Benjamini & Hochberg 1995). This differs substantially from meth-
ods that control the EER, which are concerned with keeping the number of
Type I errors low. One will have more Type I errors using the FDR, but the
proportion of them is controlled, and the power to detect differences among
treatments will be higher than EER methods. This approach seems par-
ticularly useful for studies that screen many treatments or groups, possibly
for future work, and it is more important to identify possible effects than
controlling the number of Type I errors (Verhoeven et al. 2005).

The FDR method for multiple comparisons works as as follows (Benjamini
& Hochberg 1995). Suppose you have k pairwise comparisons, and obtain a
P value for each one using the LSD procedure. Let P[1] ≤ P[2] ≤ . . . ≤ P[k]

be the P values for these tests, ordered from smallest to largest, with P[i] the
ith one. Let α∗ be the specified false discovery rate. We then examine the
ordered P values from largest to smallest (from i = k to 1), examining at
each step whether

P[i] ≤
i

k
α∗. (13.37)

We can see that the right side of this equation decreases from α∗ to α∗/k as
i decreases. The first time this inequality is true, we declare that this pair-
wise comparison and all further ones are significantly different. Benjamini &
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Hochberg (1995) show that this procedure controls the false discovery rate.
The same method can also be used in other multiple testing scenarios, not
just multiple comparisons among means.

As an example of this procedure, consider the algae cover example we
examined earlier (Kneitel and Lessin 2010). There are ten pairwise compar-
isons among the different nutrient treatments. We first obtain the P values
for each comparison using the LSD method (see SAS demo below), and order
these from largest to smallest (Table 13.1). We then compare the P values
with the right side of Eq. 13.37, beginning at the top of the table. We see
that first comparison that satisfies Eq. 13.37 is high vs. low, and so we
declare this comparison and all further ones to be significant. Thus, the the
FDR procedure finds six of ten pairwise comparisons to be significant, similar
to the LSD procedure. The Tukey and REGW procedures, which control the
EER, found only two significant comparisons.

Table 13.1: Ordered P values for LSD comparisons of algae cover in different
nutrient treatments (Kneitel and Lessin 2010). The last column calculates
the right side of Eq. 13.37 for α∗ = 0.05 and k = 10 pairwise comparisons.

Comparison i P[i]
i
k
α∗

control–low 10 0.8902 0.0500
medium–high 9 0.8887 0.0450
medium–very high 8 0.5578 0.0400
high–very high 7 0.4693 0.0350
high–low 6 0.0258 0.0300
control–high 5 0.0192 0.0250
low–medium 4 0.0191 0.0200
control–medium 3 0.0141 0.0150
low–very high 2 0.0051 0.0100
control–very high 1 0.0037 0.0010
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13.7.1 False discovery rate - SAS demo

The FDR procedure can be implemented in two steps using SAS. We first
need to obtain the P values for the LSD procedure. This can be accomplished
by adding an lsmeans statement to our previous program, with a pdiff option:

lsmeans treat / adjust=t pdiff;

The result is a table of P values for each comparison, shown below.

SAS Output

Multiple comparisons for algae cover 4

Data from Kneitel and Lessin (2010)

14:39 Monday, May 23, 2016

The GLM Procedure

Least Squares Means

LSMEAN

treat y LSMEAN Number

Control 0.62753783 1

High 1.16721374 2

Low 0.65716894 3

Medium 1.19723297 4

VeryHigh 1.32351133 5

Least Squares Means for effect treat

Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: y

i/j 1 2 3 4 5

1 0.0192 0.8902 0.0141 0.0037

2 0.0192 0.0258 0.8887 0.4693

3 0.8902 0.0258 0.0191 0.0051

4 0.0141 0.8887 0.0191 0.5578

5 0.0037 0.4693 0.0051 0.5578
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We then use proc multtest to carry out the FDR procedure. The P values
for each comparison are supplied in a SAS data set, labeled as raw_p. The
data set is specified using the inpvalues option, while the FDR procedure is
requested using the fdr option. The output consists of the original and ad-
justed P values, with the adjustment made according to the FDR procedure.
Adjusted P values less than 0.05 are judged to be significant. See program
and output below. We observe that six of ten pairwise comparisons have an
adjusted P value less than 0.05, and so these are judged significant by the
FDR procedure.

SAS Program

* Kneitel_2010_algae_fdr2.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Multiple comparisons for algae cover’;

title2 ’False discovery rate (Benjamini and Hochberg 1995)’;

data pvalues;

input comparison :$18. raw_p;

datalines;

Control-High 0.0192

Control-Low 0.8902

Control-Medium 0.0141

Control-VeryHigh 0.0037

High-Low 0.0258

High-Medium 0.8887

High-VeryHigh 0.4693

Low-Medium 0.0191

Low-VeryHigh 0.0051

Medium-VeryHigh 0.5578

;

* Multiple comparisons using fdr;

proc multtest inpvalues=pvalues fdr;

run;

quit;
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SAS Output

Multiple comparisons for algae cover 1

False discovery rate (Benjamini and Hochberg 1995)

14:39 Monday, May 23, 2016

The Multtest Procedure

P-Value Adjustment Information

P-Value Adjustment False Discovery Rate

p-Values

False

Discovery

Test Raw Rate

1 0.0192 0.0384

2 0.8902 0.8902

3 0.0141 0.0384

4 0.0037 0.0255

5 0.0258 0.0430

6 0.8887 0.8902

7 0.4693 0.6704

8 0.0191 0.0384

9 0.0051 0.0255

10 0.5578 0.6973
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13.9 Problems

1. White-tailed deer are voracious consumers of landscaping plants. A
frustrated homeowner/professor is interested in testing whether differ-
ent repellents actually reduce deer herbivory. Replicate plots of house-
plants are established and four different treatments applied to the plots:
(1) a control with no treatment, (2) hot pepper oil repellent, (3) rotten
egg repellent, and (4) livestock blood repellent. There were 4 replicate
plots per treatment. The amount of herbivory (percentage of plants
eaten) after one month are given in the following table.

Control Hot pepper Rotten eggs Blood
61.1 54.4 32.0 36.2
64.9 67.9 28.5 38.3
61.6 54.6 21.6 31.1
67.8 58.1 38.8 44.1

(a) Test whether there is an overall effect of treatment on the percent-
age of plants eaten, using one-way anova and SAS. Report your
results using P values and discuss the significance of the test.

(b) Use the Tukey procedure to compare the different treatments, and
interpret your results. Which pairs of treatments are significantly
different? Do the treatments fall into particular groups?

(c) Suppose the homeowner is only interested in treatments that are
different from the control. Use the Dunnett method to compare
the three treatments with the control one. Which treatments are
significantly different from the control?

2. PCB concentrations were measured in the sediment of Crab Orchard
Lake, at 11 different sites (Kohler et al. 1990). Three samples were
taken at each site, yielding the data shown in the table below. Site
10 is near an abandoned dump site for a manufacturer of electrical
transformers.
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Site PCB (mg/kg), sample 1-3
1 0.0453, 0.0626, 0.527
2 0.0395, 0.0494, 0.0416
3 0.0234, 0.0451, 0.0541
4 0.033, 0.0643, 0.0517
5 0.0394, 0.0810, 0.0266
6 0.0294, 0.0425, 0.0538
7 0.0255, 0.0440, 0.0427
8 0.0323, 0.0382, 0.0360
9 0.0533, 0.0407, 0.0626
10 0.160, 0.437, 0.343
11 0.135, 0.142, 0.0592

(a) Test whether there is an overall effect of site on PCB concentra-
tion, using one-way ANOVA and SAS. Treat site as a fixed effect.
Report your results using P values and discuss the significance of
the test. A log transformation should be applied before analysis.

(b) Use the REGW procedure to compare the different sites, and inter-
pret your results. Which pairs of sites are significantly different?
Do the sites fall into particular groups?

3. An entomologist wants to compare the attractiveness of nine different
baits (A-I) for bark beetles. There were three replicate traps for each
bait treatment. The table below lists the number of beetles captured
in each trap.

Bait Beetles, trap 1-3
A 27, 36, 26
B 25, 19, 37
C 8, 16, 12
D 15, 8, 12
E 68, 42, 57
F 43, 32, 47
G 10, 12, 19
H 71, 62, 53
I 19, 11, 21

(a) Test whether there is an overall effect of bait on beetle captures,
using one-way ANOVA and SAS. Report your results using P
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values and discuss the significance of the test. Apply a log trans-
formation before analysis.

(b) Use the FDR procedure to compare the different baits, and inter-
pret your results. Which baits are significantly different?
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